
	
	

	

UBC	Farm	Web	Application	
Design	Document	&	Report	
UBC	Sustainability	Scholars	Program	Project:	 	
Stewardship	science	technology	for	monitoring	the	socio-

ecological	outputs	of	farming	activities	
	

Xingyu	Tao	
August	2017	

	

	

	 	

	
	

Table	of	Contents	
	 	

Abstract	...	1	

System	Architecture	and	Rationale	...	2	

Material	UI	&	Bulma	..	3	

Express	...	3	

Node	..	3	

Redux	&	React	...	4	

D3	..	5	

MongoDB	...	5	

Detailed	Design	..	6	

Design	Patterns	..	7	

Component	Container	Pattern	..	7	

Redux	Store,	Redux	React	Patterns	...	7	

Introduction	to	Pages	..	8	

Fields	..	8	

Google	Maps	API	...	8	

Tasks	..	9	

VIS	Timeline	API	...	10	

Inventories	...	10	

D3	API	..	11	

Finances	...	11	

Users	&	Reports	...	11	

Design	Challenges	and	Recommendation	...	12	

Integrating	Modules	with	React	..	12	

Interconnectivity	..	12	

Conclusion	...	13	

	

1	
	

Acknowledgements	
	 	

With	special	thanks	to	Prof.	Hannah	Wittman	and	Dr	Zia	Mehrabi	for	all	the	support	provided	in	
completing	this	project.	

Abstract	
	
	 The	UBC	Farm	Socio-ecological	Monitoring	Application	(hereafter	“UBC	Farm	App”)	is	an	
ongoing	project	that	aims	to	develop	a	dynamic	monitoring	and	reporting	system	for	UBC	Farm	that	can	
also	be	adapted	to	other	scales	of	farming	operations	(local,	regional,	global).	Its	ultimate	goal	is	to	
make	farming	more	sustainable	by	closely	tracking	and	reporting	on	every	aspect	of	a	Farm’s	operation,	
from	resources	used,	hours	worked,	to	bio-diversity	levels,	climate	change	impacts,	finances,	and	food	
produced.	Through	several	research,	design,	and	implementation	cycles,	it	has	reached	its	current	
iteration	which	combines	an	array	of	intercommunicating	modules	together	to	offer	real-time	tracking	
and	reporting	functions.	
	 	
	 This	document	aims	to	provide	a	detailed	report	on	the	system	architecture	and	design	choices	
of	the	application’s	current	iteration	(April	–	September	2017).			It	accompanies	the	online	
documentation	and	code	for	the	application	found	https://github.com/ubc-farm	and	includes	an	
overview	of	the	following	features	currently	in	the	implementation	queue	of	the	project:	
	

1.	Fields	 Completed	
2.	Tasks	 Completed	
3.	Inventories	 Completed	
4.	Finances	 Completed	
5.	Employees	 Implementing	
6.	Reports	 Implementing	

	 	

2	
	

System	Architecture	and	Rationale	
	 	

This	application	makes	use	of	a	layered	architecture	to	separate	the	database,	business	logic,	
and	UI	to	help	facilitate	code	development.	This	follows	naturally	from	the	“MERN”	(MongoDB,	Express,	
React,	Node)	stack’s	design	philosophy.	The	restriction	of	imposing	an	established	framework	such	as	
React	on	the	project	improves	the	stability	of	the	web	application,	and	it	also	makes	incorporating	new	
features	easier	due	to	extensive	existing	reference.	

	
The	figure	below	gives	a	visual	representation	of	each	component’s	role	in	the	current	UBC	Farm	

application.		
			

	

	

	

	

	

	

	

	

	

	

	

	

	 Each	component	in	the	UBC	Farm	App’s	layered	architecture	fulfills	a	well-defined	role.	This	
separation	of	tasks	also	facilitates	the	control	for	the	data	flowing	between	each	layer,	so	that	sensitive	
information	can	be	kept	secure	as	required	for	private	farm	owners	and	as	specified	by	UBC’s	
information	security	policies.1	Briefly,	the	specific	roles	of	each	of	the	component	will	be	elaborated	in	
the	following	pages.	

	
																																																													
1	Acceptable	Use	and	Security	of	UBC	Electronic	Information	and	Systems.	PDF.	Vancouver:	The	University	of	British	
Columbia	Board	of	Governors,	June	2013.	

Figure	1	-	Layered	Component	Diagram	

3	
	

Material	UI	&	Bulma	
	

At	the	top	level,	for	styling	and	responsive	design,	this	app	uses	two	CSS	Frameworks:	Material	
UI	and	Bulma.	Material	UI	is	a	mobile-first	design	widely	used	on	Android	and	Chrome,	which	contains	a	
wide	array	of	ready-to-use	components	such	as	search	bars,	form	fields,	and	date	selectors.	Bulma	is	a	
web	framework	useful	for	its	sleek	fonts	and	responsive	columns.	Together	they	provide	the	styling	for	
this	application’s	components	and	are	the	most	important	factors	controlling	the	aesthetic	appearance	
of	the	user	interface.	

	
Express		
	 	
	 As	a	minimalist	and	flexible	Node	Framework	for	web	applications,	Express	offers	a	way	to	
standardize	development	of	web	applications	in	an	object-oriented	way.	It	is	a	service	that	abstracts	the	
HTML	document’s	elements	into	objects	by	using	JavaScript.	The	way	it	accomplishes	this	and	manages	
to	escape	the	pitfalls	of	the	classical	HTML/CSS/JAVASCRIPT	pattern	is	by	transpiling	(translating	code)	
from	object	oriented	syntax	into	pure	JavaScript	code,	on	top	of	the	root	HTML	document.	This	
approach	to	programming	web	applications	has	many	benefits	including	more	accurate	modeling	of	
complex	objects,	and	more	readable	code	for	collaboration	purposes.	
	

Node		

	Figure	2	-	Node	Workflow	

4	
	

	 Node	provides	an	event-driven	JavaScript	runtime	for	web	applications.	Its	Input/Output	
mechanism	is	non-blocking,	which	allows	the	UBC	Farm	App	to	support	asynchronous	(random)	updates.	
This	is	an	especially	important	component	that	drives	the	real-time	updating	features	of	the	UBC	Farm	
App.	Its	package	environment	and	online	libraries	(npm)	contains	the	largest	repository	of	open	source	
codes	that	provide	services	such	as	authentication	schemes,	css	frameworks,	and	database	APIs	
(Application	Programming	Interfaces).	Virtually	all	services	from	Google	Maps	to	MongoDB	have	their	
APIs	available	in	the	form	of	npm	packages.	

	
Redux	&	React		
	
	 Redux	and	React	are	two	separate	components	that	are	tightly	linked	together.	React	is	
essentially	a	JavaScript	library	that	allows	the	incorporation	of	states	into	HTML	elements.	This	is	crucial	
for	building	an	interactive	application	that	requires	communication	across	different	modules.	React	
keeps	track	of	each	element’s	state,	alerts	modules	of	changes,	and	updates	the	User	Interface	
accordingly,	mimicking	the	function	of	a	state	machine.	An	element’s	state	can	be	defined	as	anything,	
but	most	often	it	contains	the	element’s	current	attributes.	

	
Redux	builds	on	React	by	providing	the	link	between	React	states	and	a	third	party	Database	(in	

our	case	MongoDB).	Redux	uses	React’s	control	over	the	Document	Object	Model	(DOM)	element	to	
dynamically	update	the	UI	according	the	changes	in	the	Database,	which	it	keeps	a	copy	of	in	the	Store.	
In	doing	so,	Redux	acts	as	the	application’s	event	handler	for	user	triggered	actions	such	as	creating,	
editing,	and	deleting	information.	Redux	maintains	consistency	across	all	instances	of	the	application,	so	
it	avoids	race	cases	and	deadlocks	(two	users	try	to	change	one	value	at	the	same	time,	creating	
inconsistencies).	

	
2	
	
	
	
	
	
	
	
	
	
	

																																																													
2	Goutay,	Nicholas.	"Redux	Workflow."	Digital	image.	Getting	Started	with	React,	Redux	and	Immutable:	a	Test-
Driven	Tutorial	(Part	2).	March	30,	2016.	Accessed	August	3,	2017.	https://www.theodo.fr/blog/2016/03/getting-
started-with-react-redux-and-immutable-a-test-driven-tutorial-part-2/.	

Figure	3	-	Redux	React	Workflow	

5	
	

D3	
	
	 D3.js	is	a	well-known	JavaScript	library	that	provides	various	data	visualization	functionalities.	In	
the	UBC	Farm	App,	D3	is	used	to	visualize	time-series	as	well	as	geographical	data	and	with	the	help	of	
React	Redux	the	visuals	created	with	D3	can	be	updated	dynamically	with	user	inputs.		
	
	

MongoDB	
	
	 MongoDB	is	a	document-based,	object-oriented	Database.	Compared	to	table-based	structures	
such	as	SQL,	MongoDB	offers	an	easier	way	to	store	data	as	objects,	as	well	as	crossing	and	nesting	
them.	If	needed	it	is	also	easily	transformed	into	tabular	form.	This	way,	data	about	objects	can	be	
stored	the	same	way	they	are	modeled.	This	in	turn	makes	the	application	as	a	whole	more	scalable,	and	
ensures	consistency	in	data	models	between	the	frontend	and	the	backend	of	the	application.	It	also	
makes	incorporating	third	party	data	with	JSON	formatting	a	trivially	easy	task.	For	this	application	we	
will	be	interacting	with	MongoDB	through	Mongoose.	Mongoose	is	a	schema	based	framework	for	
modeling	application	data,	streamlining	interactions	with	MongoDB.	
	

	
3	

	
	
	
	
	
	
	
	
	

	

	 	

																																																													
3	Malaya,	Victoria.	SQL	vs.	MongoDB	Terms/Concepts.	Digital	image.	Sql-vs-nosql.	November	8,	2013.	Accessed	
August	3,	2017.	http://sql-vs-nosql.blogspot.ca/2013/11/indexes-comparison-mongodb-vs-mssqlserver.html.	

Figure	4	-	SQL	vs.	MongoDB	Structure	

6	
	

Detailed	Design	
	 	

With	the	help	of	the	different	services	and	frameworks	discussed	in	the	previous	section,	the	
application	is	built	in	a	modularized	fashion.	The	visual	below	provides	an	UML	diagram	view	of	the	
overall	relationships	between	different	modules	of	the	UBC	Farm	App.		

Figure	5	–	UBC	Farm	App	Detailed	Design	UML	Diagram	

7	
	

Design	Patterns	
	
	 Several	well-established	design	patterns	provide	the	foundation	for	adding	new	modules	to	the	
current	project.	The	Component	Container	Pattern	separates	functional	components	from	
presentational	components	so	that	these	tasks	are	handled	separately.	The	Redux	Store	and	Redux	
React	Pattern	links	the	app	to	a	third	party	Database,	in	this	case	MongoDB,	to	perform	Data	storage	
and	retrieval.	

Component	Container	Pattern	
	 	
	 The	Component	Container	Pattern	is	a	method	to	separate	
the	tasks	of	data	interaction	from	those	concerned	with	User	
Interface.	Separating	code	by	function	is	also	a	way	to	make	
collaborative	development	and	debugging	easier.		
	
	 The	diagram	to	the	right	describes	the	basic	workflow	of	a	
module	constructed	according	to	the	Component	Container	
Pattern.	As	illustrated,	the	Component	interacts	with	the	data	
source	while	the	Container	interacts	with	the	User.	Most	of	the	
components	in	this	application	are	constructed	this	way,	with	a	
Component	JavaScript	file	interacting	with	Mongoose	files	and	a	
Container	JavaScript	file	specifying	the	User	Interface	layouts.	

	
Redux	Store,	Redux	React	Patterns	

	
	 It	is	no	surprise	that	Redux	and	its	
services	are	highly	connected	with	React.	
Redux	is	meant	to	act	as	a	middle-man	
between	Databases	and	React	
Components.	Its	main	concern	is	to	keep	
the	frontend	and	backend	consistent	with	
each	other.	One	dra	wback	of	Redux	and	
React	worth	mentioning	is	that	it	
interrupts	the	normal	workflow	of	the	
DOM	object.	This	means	that	other	
services	that	also	interact	with	the	DOM	
object	(such	as	D3)	need	their	own	Redux	
wrappers	as	well	in	order	to	work	
smoothly.		
	

Figure	6	-	Component	Container	Pattern	

Figure	7	-	Redux	React	Pattern	

8	
	

Introduction	to	Pages	
	
	 The	main	functionalities	of	the	UBC	Farm	App	are	grouped	by	pages,	which	appear	as	tabs	in	the	
top	navigation	bar	of	the	webpage.	They	are	Fields,	Tasks,	Inventories,	Reports,	Finances,	and	Users.	All	
of	them	are	connected	to	the	Redux	Store	via	Reducer	files,	which	encapsulate	actions	that	each	object	
triggers	when	Users	interact	with	them.	As	a	result,	they	are	all	dynamic,	and	user	controlled.	Data	
updates	and	rendering	changes	on	the	User	Interface	are	instantaneous,	which	is	a	crucial	advantage	
that	Redux	React	provides.	

	
Fields		
	 	

The	Fields	page	contains	a	prominent	Google	Maps	Component	that	
visualizes	the	geographical	data	associated	with	farm	buildings	and	fields.	Users	
can	use	the	list	to	the	right	to	focus	on	a	specific	field	or	building,	which	has	its	
associated	attributes	and	active	tasks	displayed	below	the	Map.		The	page	also	
contains	a	weather	module,	which	will	be	expanded	in	the	future	to	include	
more	features.	The	main	fields	in	a	Field	object	model	are	its	name,	its	
associated	GEOJson	Polygon	representing	its	geographical	area,	and	a	TaskList	
representing	the	current	tasks	that	are	associated	with	the	field.	Standard	CRUD	
actions	can	be	performed	on	the	field,	including	deleting,	fetching,	and	saving.	
The	select	action	is	added	to	support	field	selection	on	the	Fields	page.	

	

Google	Maps	API	
	

	

	

	

	

	

	

	

	

Figure	8	-	Field	Object	
Model	

Figure	9	-	Fields	Page	

9	
	

The	Fields	page	uses	Google	Maps	API	to	visualize	the	geographical	information	of	fields	and	
buildings,	including	calculating	their	coverage	area,	as	well	as	performing	accurate	distance	
measurements.	To	make	the	Google	Maps	API	compatible	with	React	Components,	a	helper	npm	
package	called	react-google-maps	is	used,	as	well	as	some	custom	JavaScript	code.	

	
Tasks	
	
	 There	are	8	types	of	tasks	that	can	be	set	in	the	current	prototype:	seeding,	irrigation,	pest-
control,	transplanting,	soil-sampling,	scouting-harvest,	scouting-pest,	and	fertilizing	(additional	tasks	for	
e.g.	bed	preparation,	weed	control,		and	custom	user	defined	tasks,	will	be	included	prior	to	release).		
Each	task	is	associated	with	a	specific	field	or	building.	When	a	user	is	logging	a	task,	resources	can	be	
subtracted	from	or	added	to	inventories.	These	changes	are	tracked	by	the	inventories,	and	form	the	
basis	from	which	data	can	be	gathered	for	report	generation.			
	

The	Tasks	page	contains	two	tabs	that	allow	users	to	switch	between	a	List	view	of	the	tasks	and	
a	Timeline	view	of	the	tasks.		
	

	

Figure	10	-	Tasks	List	View	

	 The	list	view	clearly	shows	the	type,	dates,	and	field	associated	with	each	specific	task.	Buttons	
for	logging	tasks	and	deleting	them	are	also	easily	accessible.	Tasks	can	also	be	set	from	the	Fields	page	
as	well,	where	each	field	has	its	own	Task	List	displayed,	containing	only	tasks	that	are	associated	with	it.		

	

10	
	

VIS	Timeline	API	
	

Figure	11	-	Tasks	Timeline	View	

	 To	provide	a	more	visual	way	of	representing	the	tasks,	the	vis.js4Timeline	package	was	used.	In	
order	to	make	the	package	compatible	with	React	Components	using	it,	a	React	wrapper	file	was	
necessary.		The	Timeline	shown	in	the	figure	above	adjusts	automatically	to	new	tasks	being	set,	and	
users	can	freely	zoom	in	and	out	to	adjust	the	timeframe.	

Inventories	
	 	
	 The	Inventories	page	is	a	collection	of	Lists	
representing	all	resources	being	tracked.	The	7	
main	categories	of	resources	identified	are:	Seeds,	
Transplanting,	Fertilizers,	Pest	Control,	Equipment,	
Vehicles,	and	Harvested	Produce.			
	 	
	 Each	object	in	each	collection	is	further	
subdivided	by	supplier	if	applicable,	to	separate	
cases	where	the	same	resource	has	several	
different	sources.	This	increases	the	granularity	of	
data	available	and	allows	for	more	accurate	
tracking	of	resource	usage.	

																																																													
4	Documentation	available	at	visjs.org	

Figure	12	–	Inventory	Item	Modal	Example	

11	
	

	

Figure	13	–	Inventory	Page	

	
D3	API	
	 	
	 In	order	to	visualize	the	composition	of	different	Inventory	Items,	D3	is	used	to	create	line	and	
pie	charts	detailing	the	availability	of	items	over	time,	as	shown	in	figure	12.	Although	being	a	
declarative	way	to	build	visuals,	because	D3	has	its	own	update	workflow	it	is	harder	to	incorporate	with	
React	compared	to	other	APIs	such	as	Google	Maps	or	VIS.	Currently,	the	D3	components	are	updated	
by	manually	triggering	a	re-rendering	of	the	containing	React	component.	This	issue	is	further	discussed	
in	the	Design	Challenges	and	Recommendations	section	of	this	report.	

	
Finances	
	 	
	 The	Finances	page	is	subdivided	into	5	tabs:	Summary,	Clients,	Suppliers,	Invoice,	and	Purchase	
Form.	Summary	presents	an	overview	of	the	financial	inputs	and	outputs	of	the	Farm	over	a	specified	
amount	of	time	adjustable	by	the	user.	Clients	and	Suppliers	each	maintain	a	list	of	current	clients	and	
suppliers	and	keeps	record	of	their	historic	activities	by	tracking	purchase	and	sales	items.	Invoice	and	
Purchase	Form	are	two	form	pages	where	users	create	new	invoices	and	purchase	forms.		
	 	

Users	&	Reports	
	 	
	 The	Users	page	keeps	a	list	of	active	users/employees	of	the	Farm.	These	can	be	edited	with	
administrator	access.	The	Reports	page	contains	various	reports	generated	with	D3	using	data	gathered	
through	all	the	different	application	modules.	The	data	is	aggregated	and	calculated	automatically.			

12	
	

Design	Challenges	and	Recommendation	
	
	 Throughout	the	development	of	the	current	iteration	of	the	UBC	Farm	App,	there	have	been	
many	obstacles	to	overcome.	Listed	below	are	two	challenges	that	had	significant	impact	on	the	way	the	
application	is	built.	These	points	should	be	taken	into	account	when	designing	future	components.		
	 	

Integrating	Modules	with	React	
	
	 There	are	many	different	third	party	packages	and	modules	incorporated	into	this	project.	
Integrating	all	of	them	with	React	smoothly	is	then	very	important	in	order	to	assure	efficiency	and	to	
avoid	bugs.	This	report	mentions	three	such	modules:		Google	Maps,	Vis	Timeline,	and	D3.		
	

D3	in	particular	was	hard	to	integrate	with	React	since	it	has	its	own	update	cycle	separate	from	
that	of	the	DOM	object	(the	backbone	of	any	website).	It	is	therefore	separate	from	React’s	workflow	as	
well.	In	order	to	ensure	that	updates	from	one	of	these	two	will	trigger	updates	in	the	other,	there	exists	
two	possible	solutions:	

1) Re-render	the	SVG	visual	generated	by	D3	with	new	data	when	changes	occur	
Pros:	 Data	will	be	consistently	updated	
Cons:		 Updates	might	become	choppy	if	internet	is	slow	(affects	user	experience)	

2) Hand	the	handling	of	the	on-click	event	completely	to	D3	
Pros:	 Updates	will	be	smooth,	allowing	better	animation	and	transition	
Cons:		 Listeners	must	be	set	up	on	both	sides	to	relay	user	inputs	and	new	data	

In	this	case,	option	2	was	chosen	because	it	costs	little	extra	work	to	set	up	listeners	and	it	
provides	a	better	user	experience	with	smoother	transitions.		

	

Interconnectivity	
	
	 This	is	an	issue	that	the	Redux	React	pattern	is	aimed	at	solving.	Without	it,	the	state	of	each	
object	needs	to	be	monitored	separately	and	all	must	communicate	with	a	shared	database.	Redux	
React	takes	control	of	this	process,	using	its	Store	as	a	mockup	of	the	database.	While	it	seems	like	just	a	
copy	of	information	form	the	database,	it	fulfills	the	important	job	of	keeping	the	state	of	every	object	
very	organized	from	the	developer’s	point	of	view.	Behind	the	scene,	it	also	updates	the	DOM	element	
affected	by	changes	automatically,	so	no	JavaScript	event	listeners	need	to	be	manually	set	up.	
	
	

13	
	

Conclusion	
	
	 The	UBC	Farm	App	presents	great	potential	for	building	an	agriculture	oriented	task	
management	and	reporting	system	that	increases	the	sustainability	of	farming	practices	by	tracking	the	
socio-ecological	footprint	of	farming.	This	project	is	a	great	opportunity	for	both	research	into	building	
scalable	software	applications	and	learning	more	about	sustainable	farming	practices.	The	most	
important	result	from	this	Sustainability	Scholars	project	is	a	solid	foundation	on	which	more	
improvements	and	new	modules	can	be	added	to	in	the	future.	
	

