

UBC Sustainable Farming Tool
LITEFARM

Prepared by: Craig Yu, UBC Sustainability Scholar, 2018
Prepared for: Dr. Zia Mehrabi, Research Associate, The UBC Policy School, Institute
for Environment Resources and Sustainability, and UBC Farm.
August, 2018

Acknowledgements

The author would like to thank Karen Taylor and Dr. Zia Mehrabi for their support and feedback

throughout this project.

Cover photo courtesy of UBC Communications and Marketing

Contents

Executive Summary ___ 1

Introduction __ 2

General background __ 3

Development Approach ___ 5

Development Process ___ 6

Phase I: Back-end __ 6

 Phase II: Front-end __ 13

Summary __ 17

References ___ 18

LiteFarm | Craig Yu

Page 1

Executive Summary

LiteFarm is a multifunctional web app that aims to help farmers make day-to-day decisions, and

encourage them to farm more sustainably. The feature set in LiteFarm was created based on a

farmer participatory design process, including iterative user experience and user interface

testing. The project is ongoing but my work during the UBC Sustainability Scholars program fell

within the key phase of implementing a high fidelity prototype of the app.

Currently we are developing a Minimal Variable Product (or MVP), which “is a product with just

enough features to satisfy early customers, and to provide feedback for future product

development” (Wikipedia, 2018). The MVP development was initiated in 2 phases: a back-end

phase, and a front-end phase. As a UBC Sustainability Scholar, I worked as part of a developer

team to (1) create a technology plan and design operating procedures, (2) map a detailed back

end architecture to a normalized database design, (3) populate the back-end with a range of

default data for data driven user experience, (4) write API for posting and getting information

from the database, and (5) implement the user sign up, profile, mapping, logging features of the

front-end. Details of my work during my time as a Sustainability Scholar with the LiteFarm

application project are further explained in this document.

LiteFarm | Craig Yu

Page 2

Introduction

Farming in the 21st century requires complex logistics. This is exacerbated by the need to produce

food in the most environmentally and socially responsible way possible. With the ever-evolving

technologies, in rich nations farm sizes are getting larger, and fewer people are required to work

on an acre of field each year (Roser, 2018). However in poorer nations, the size of farms is only

getting smaller: these are often highly diverse and require large amounts of labor. In both cases

data collection and reporting responsibilities are increasingly placed on farmers. Juggling

different management software tools can be daunting and time consuming, and in some cases –

particularly for diversified and complex farming system technologies, easy to use solutions do not

exist. Our project aims to develop an open-source multifunctional web application that helps

farmers to manage their farms more efficiently, while promoting sustainable farming. It was

coined LiteFarm because our primary target users are diversified farm owners and workers, who

have trouble with complex cropping problems, and technology adoption. The brand represents

a tool that is easy, light, and something that users won’t even notice they are carrying in their

pocket.

LiteFarm has 8 major features, which perform the following functions:,

1. Profile: Sign up, access control, worker management, information settings.

2. Fields: Provide access to satellite imagery and a mapping tool to help farmers design their

field plans, and manage rotations.

3. Finances: ales, Expenses, and on the fly calculation of profit and loss by crop.

4. Logs: Fertilizer, pesticide, irrigation, scouting, and a variety of other activity logs for record

keeping

5. Notifications: Smart notification to farmers such as pest outbreak activities, and extreme

weather.

6. Shifts: Easy labor tracking.

7. To-do lists: Create to-dos and assign them to farm staff

8. Reports: End of season reporting of socio-ecological outcomes, including price trends,

profit and loss, water use efficiency, nitrogen use efficiency, biodiversity on farm, soil

health, labor wellbeing, and food supply.

Features such as logs and finance help farmers to understand their farms’ operation with ease.

Farmers can track their usage of fertilizers and pesticides to make farming more sustainable. The

log records can also help farmers to get their organic produce certified. LiteFarm as an open-

source free web app lowers the technological barrier to entry, encourages more farmers to use

LiteFarm | Craig Yu

Page 3

our app thus induce more sustainable farming. The development of this web app is the core of

this project, so this report is mainly focused on the developing process.

General background

For a typical web app to function there are two broad components needed to be developed and

tested. They are the ‘back-end’ and the ‘front-end’. The back-end belongs to the data-access

layer of an application. It is an aggregation of services on the server-side that distributes

necessary data to clients. The front-end belongs to the presentation layer, or the client side of

the application. It gathers data using back-end services and presents them to users in a useable,

interactive way. In this document we will examine two components of their design: the

technology and their implementation in our project. Figure 1 shows a rough blueprint of how

front and back-end are linked.

The main communication method between the front and back-end is through the use of API,

namely a REST API. API stands for Application Programming Interface: a set of predefined calls

that can be made by a client to a server. REST stands for Representational State Transfer, which is

an API architectural style. There are 4 commonly used methods in a REST service.

Figure 1 Credit: The Map of Life

https://mappinglife.wordpress.com/2011/04/21/40/

LiteFarm | Craig Yu

Page 4

METHOD USAGE

GET Read

PUT Update/Replace

POST Create

DELETE Delete

For example, when you go to a website to check foreign exchange rate, the website will make a
GET call to a server, which will send back an object that contains all the necessary information.
You can try this (https://exchangeratesapi.io/api/latest) in your browser to see the object that
gets sent back!

In the next two sections I will go on to explain the work that I managed to accomplish on both
the front and back end components of the application, and explain the technologies and way
they were implemented. Two cross-cutting technologies that were used across both the front
and back end are listed below for reference.

Node.js:

A JavaScript run-time environment that executes scripts written in JavaScript on the server-side.

npm:

npm stands for node package manager, it lets developers to install/uninstall packages made

available by other developers without worrying about dependencies.

If the web app is a phone, then the operating system on that phone is Node.js, and the App

Store/Play Store is npm. They are the backbone of both the front and back-end.

https://exchangeratesapi.io/api/latest

LiteFarm | Craig Yu

Page 5

Development Approach

There are many development philosophies of how to implement a web app. We chose to develop

the back-end first because in our opinion it is the most efficient way, given the size of our team,

the time constraint, and the detailed mapping of data and algorithms that are required for the

front end to run. The idea, was that, once the back-end development was complete, we can

make actual API calls to our server to retrieve or modify data instead of mocking the data for the

front-end to use. The process helped us to understand the full scope of the application.

Before we started coding, we worked as a team to make a plan of action and prepared a range of
planning documents to help provide guidance during the development process. The idea is that
this would provide us with a structured workflow, and also help future developers to quickly
integrating into our team.

The documents we worked on included:

DOCUMENT PURPOSE

Coding standard A set of rules to enforce a coding standard to make code cleaner

and more coherent. This is essential for a group project as each

developer has their own coding style preferences. The standard is

enforced by using ESLint.

Technology plan Provides a list of technology that will be used for development.
Including comparisons of different technologies to inform the
right technology choices before starting the project.

Operation procedures Establish procedure rules for the development. Such as meeting

frequencies and branch merging procedure.

LiteFarm | Craig Yu

Page 6

Development Process

Phase I: Back-end

Upon starting the project, the required features, a high fidelity prototype of the user interface,

and a detailed information architecture, were already in place. This enabled us to design the

database and define necessary API upfront. Before we designed the database, we had to decide

on which type of database we will use. The choices are a relational database(SQL) or non-

relational database(NoSQL). This article provides more information on the differences between

those two.

PostgreSQL

Based on the web app’s features, we chose to go with a relational database for its scalability and

reliability. PostgreSQL is a relational database management system, it allows us to manage the

database with Structured Query Language.

With an information architecture diagram of the back-end, using relational database design

principles, our team created a database schema that would allow us to implement the database.

Figure 2 shows a snippet of an early

iteration of the database schema

representing the crop table, and each

attribute is a column name of the table.

Figure 2

https://medium.com/xplenty-blog/the-sql-vs-nosql-difference-mysql-vs-mongodb-32c9980e67b2

LiteFarm | Craig Yu

Page 7

In order to achieve the data driven features of the web app, we needed to collate a range of data

on which the back-end algorithms were to run. The challenge for this was that no crop related

online data sources are available for us to use right away. The data being either in the form of

web page, PDF, or raster file. By using a combination of Chrome plugins and Python package

called Beautiful Soup, I was able to scrape the data from web pages and store them as CSVs. The

scraped data needed more ‘wrangling’ to be usable for the database. For example, the crop table

in our database needed crop groups, crop names, crop nutrient contents, crop rooting depths,

and crop coefficients. All three of those data came from different sources, but they needed to be

integrated into one table. Another challenge was that a common crop name can be associated

with many scientific names, and vice versa. That made the merging of the data much more

difficult. In the end this was done by using multiple Python scripts and manual check for data

integrity.

After we created the database from the schema, and populated it with the data, it was time to

implement the API for our app. Our API consists multiple endpoints. The endpoints I

implemented and tested for the team (who also worked on a range of others not shown) are

shown in the table below.

REQUEST METHOD ENDPOINT PURPOSE

GET /user/:id Get user by user id

GET /user/farm/:farm_id Get all users under the farm id

POST /user Create a user

PUT /user/:id Update a user by user id

DELETE /user/:id Delete a user by user id

GET /crop/:id Get a crop’s info by crop id

GET /crop/farm/:farm_id Get a list of crops by farm id, the list
includes a default crops and custom crops
added by the users under the farm id

PUT /crop/:id Update a crop by crop id

POST /crop Add a default crop

DELETE /crop/:id Delete a crop by crop id

GET /farm/:id Get farm info by farm id

POST /farm Create a farm

PUT /farm/:id Update a farm by farm id

DELETE /farm/:id Delete a farm by farm id

GET /field/farm/:farm_id Get a list of fields under a farm id

LiteFarm | Craig Yu

Page 8

POST /field Create a field by field id

PUT /field/:id Update a field by field id

DELETE /field/:id Delete a field by field id

GET /farm_crop/farm/:farm_id Get a list of crops planted under a farm id

POST /farm_crop Create a crop being planted in a farm

PUT /farm_crop/:id Update the crop being planted in a farm by
farm crop id

DELETE /farm_crop/:id Delete the crop being planted in a farm by
farm crop id

GET /shift/:id Get a shift’s info by shift id

POST /shift Create a shift

PUT /shift/:id Update a shift by shift id

DELETE /shift/:id Delete a shift

GET /task_type Get all task types

GET /task_type/:id Get a task type by task type id

POST /task_type Create a task type

DELETE /task_type/:id Delete a task type by task id

LiteFarm | Craig Yu

Page 9 Figure 4

Figure 2

A detailed example

In this section, we will look at one example of how we implemented the back-end system, so that

it can send back a list of crops upon a client’s request. The same idea applies to the endpoints

listed above, and others included in the application.

When a client initiates a request of the crop list to the server in the form of a GET call, the server

should parse the call to know what the client is requesting and run the scripts that would query

the database and send the list back. This is achieved by using Express. Express is a Node.js

framework that provides features needed to build our API.

Figure 3 shows a snapshot of the database.

The crop list is stored in the highlighted

crop table. Inside the table contains all the

necessary information of all crops as

shown in figure 4.

https://expressjs.com/

LiteFarm | Craig Yu

Page 10

Figure 5

Step 1: accept a call

The endpoints that are currently registered in

our server can be seen in figure 5.

When a user make a request of:

The server takes the /crop part of the url to

know which script to run, in this case it will run

the cropRoutes script.

Step 2: execute a call

Since the client is making a simple GET call, the cropRoutes script will call the function on line

9 in figure 6. The getAllCrop() function will then make an inquiry to the database to retrieve

the data in the crop table.

GET

http://localhost:5000/crop

Figure 6

LiteFarm | Craig Yu

Page 11

Step 3: complete a call

In the event that the inquiry is valid and successful, the database will return the data requested

to the server. Then the server would send all the data to the client along with a 200 OK status

indicating the call was successful.

If some errors occurred during the inquiry process, the server would send back an error status

code indicating the type of error along with an optional error message. For example, if the

database is missing the crop table, then the server would send back a 500 error code indicating

an internal server error.

LiteFarm | Craig Yu

Page 12

An overview of the whole example

Figure 7 shows the call being made to the server on the top, and the response got sent back from

the server at the bottom. The crop list is an array of objects, with each object being an row in the

crop table.

Figure 7

LiteFarm | Craig Yu

Page 13

Phase II: Front-end

The web app we are building is a single-page application (SPA). Unlike the traditional static HTML

web that needs to refresh every time when something is changing, SPA renders the changing

element dynamically using JavaScript on the same HTML page. An analogy would be watching

cartoons using a flip book versus using a TV. This allows us to provide a much more smooth and

true to a native application user experience.

We are building the SPA using React. React is a JavaScript library to build user interface developed

by Facebook. It is a robust library that can be easily integrated with packages available on npm.

For instance, we needed a calendar component

(figure 8) for user to choose a date. Instead of

spending days making and testing our own calendar,

we just installed a package called react-dates

using npm. It is a calendar created and made available

to the public by the good people at Airbnb. Though

some styling and modification were still needed for

the calendar, this dramatically reduced our

development time.

A key component of this web-app is offline capability. The plan (to be implemented in the coming

weeks) is to use Progressive Web App (PWA) technology to achieve this goal. The advantage of a

PWA compares to a normal web app is that users can save our web app onto their phones, and

the app will still have some features working without a network connection. This can come in

handy for farmers in rural area without easy access to the Internet when on a field.

Figure 8 A calendar component

https://www.npmjs.com/package/react-dates

LiteFarm | Craig Yu

Page 14

Figure 10 Figure 9

Most of the front-end work is implementing the design made by the UX and UI designers on the

project. Figure 9 shows the UI design and Figure 10 shows the current page being implemented.

As you can see there are some differences between these, but since we are making an MVP we

focus more on the implementation of functionalities, we opted out from pixel perfect mapping.

The styling will be updated in the later stage of Phase II. About half of the front-end work is still in

progress, but the project will be continued after August 10th, 2018.

LiteFarm | Craig Yu

Page 15

Figure 11 Onboarding Page Figure 12 Profile - Account Setting

Figure 13 Profile - Notification Setting Figure 14 Profile - People

Front end work

I managed to work on a rage of the key features of this application during my time on the project.

These included, the profile, logs features and various components. Screenshots below show an

overview of examples of pages that I have implemented..

LiteFarm | Craig Yu

Page 16

Figure 15 Profile - People - Add a person Figure 16 Profile - Farm setting

Figure 17 Add a new log Figure 18 Add a Fertilizer Log

LiteFarm | Craig Yu

Page 17

Summary

LiteFarm presents high potential to attract its target audience. The feature-rich web app provides

a single platform for farmers to manage their farms while maintaining a degree of simplicity.

Users of LiteFarm can better track their production process and make smarter decisions during

the season. With historical data provided to the farmers, they can make better plan with their

operations. All of these would make their farming more sustainable and profitable. Being an open

source project encourages more people to participate in the projects, which in turn making

LiteFarm more easily to be updated and improved by the community in the future.

LiteFarm | Craig Yu

Page 18

References

Wikipedia. “Minimum Viable Product.” Wikipedia, Wikimedia Foundation, 24 July 2018,

en.wikipedia.org/wiki/Minimum_viable_product.

Roser, Max. “Employment in Agriculture.” Our World in Data, 2018,

ourworldindata.org/employment-in-agriculture.

	Executive Summary
	Introduction
	General background
	Node.js:
	npm:

	Development Approach
	Development Process
	Phase I: Back-end
	PostgreSQL
	A detailed example
	Step 1: accept a call
	Step 2: execute a call
	Step 3: complete a call
	An overview of the whole example

	Phase II: Front-end
	Front end work

	Summary
	References

