
 UBC Social Ecological Economic Development Studies (SEEDS) Student Report

Daniel Peerson, Francois-Olivier Morin, Maziar Sharifikhah, Mohammad Kabir, Yekaterina Lim

Design Specifications for

Sole Power-Up Project

EECE 409/429/419/439/400/469

April 06, 2017

1633

2405

University of British Columbia

 Disclaimer: “UBC SEEDS Program provides students with the opportunity to share the findings of their studies, as well
as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this
is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these
reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned

in a report or a SEEDS team representative about the current status of the subject matter of a project/report”.

 University of British Columbia (UBC)

 Design Specifications for

Sole Power-Up Project
Pedal-Powered Mobile Device-Charging Station

Prepared by: Francois-Olivier Morin, Maziar Sharifikhah,

Yekaterina Lim, Mohammad Shadman Kabir and Daniel P.

Peerson

ELEC 491 Capstone Design Project

April 6, 2017

Executive Summary
The following document describes the electrical design for a pedal powered phone

charging station. The overall structure of the system is explained along with the

motivation for selecting each component. The specific components are discussed,

including their specifications and implementation into the overall design. Also discussed

are the project’s challenges, safety measures, and design updates. While a functional

electrical design is described in detail, the mechanical portion of the station is not

discussed.

Table of Contents

List of Figures 2

1. System Architecture 3
1.1 Previous Capstone Architecture 3
1.2 Current System Architecture 3

2. System Components 6
2.1 Power Generation 6

2.1.1 Alternator 6
2.2 Energy Management 6

2.2.1 Charge Controller 6
2.2.2 Battery 8

2.3 Power Measurement 9
2.3.1 Measurement Circuitry Overview 9

2.4 Microcontroller 10
2.5 Sensors 11

2.5.1 RPM / Pedal Detection 11

3. System Design Implementation 12
3.1 Automatic System Startup and Shutdown 12
3.2 Mobile Device Charging Circuitry 13
3.3 Safety 14
3.4 Edutainment System 15

4. Design Recommendations 16

References 18

Appendices 20
Appendix 1: Sample Power Measurement Calculations 20
Appendix 2 : Mobile Device Charging Diagrams 22
Appendix 3 : Bill of Materials 24
Appendix 4 : System Schematics 26
Appendix 5 : System Figures 29
Appendix 6: Arduino Code 33
Appendix 7: Edutainment System Mockups 41
Appendix 8 : Microcontroller Algorithm Flowchart 44

1

List of Figures
Figure 1: System Block Diagram 5

Figure 2: Charge Controller Flowchart 7

Figure 3: Power Measurement Circuitry Schematic 9

Figure 4: State machine diagram 13

Figure 5 : Block Diagram of Mobile Device Charger 22

Figure 6 : Adjustable Current Limiter Circuit 23

Figure 7 : Adjustable Voltage Regulator Circuit 23

Figure 8 : Efficiency Graph of Buck Regulator 24

Figure 9 : Electrical Schematic of Mobile Device Charging Station 26

Figure 10: Arduino Board Schematics 27

Figure 11: Power Distribution Circuit Schematic 28

Figure 12: Render of Overall System 29

Figure 12: Magnetic Switch Sensor 29

Figure 14: Windblue 520 Alternator 30

Figure 15: MorningStar ProStar-30 Charge Controller 30

Figure 16: DROK CC CV Regulator 31

Figure 17: Surrette Rolls S12-128AGM 12V 115 AH AGM Battery 31

Figure 18: 16-Channel Relay 32

Figure 19: 4D Systems GEN4-ULCD-70DT 32

Figure 20: Main entertainment system screen (low power items) 41

Figure 21: Main edutainment system screen with alternate theme (low power items) 41

Figure 22: Race between the two users 42

Figure 23: Main entertainment system screen (high power items) 42

Figure 24: Main edutainment system screen with alternate theme (high power items) 43

2

1. System Architecture
1.1. Previous Capstone Architecture

The previous capstone group left a system that included a working mechanical design

as well as a number of high quality electrical components. However, it needed to be

plugged into the wall as the passive power consumption was only sustainable for hours

without a direct connection to an outlet which is requirement FR3 for the project. Power

from pedalling was being wasted on converting voltage from 12V DC to 120V AC then

again back down to 5V DC to charge the phone battery causing unacceptable losses.

The mechanical system, while functional, had pedals which exhibited rapid changes in

acceleration that were not conducive to a pleasant user experience.

1.2. Current System Architecture
The system is currently designed to allow up to two users to charge their mobile devices

using energy they generate by pedalling on stationary bikes (FR1). It converts

mechanical energy from the rotation of pedals to electrical energy, regulating the voltage

and current, to charge a battery which in turn charges the user’s mobile device. The high

level system design to achieve this goal is shown in Figure 1 below. It should be noted

that our design covers only the electrical portion of this system. The mechanical portion

referred to as the “Bike Mechanical System” block (encompassing the bikes and

differential gearbox) in Figure 1 is the responsibility of this project’s AMS representative.

A rendering of the station can be found in Appendix 5 Figure 12. A list of parts selected

for our design is included in Appendix 3. This section will describe the block diagram in

more detail.

To start the mobile device charging process, a user inputs mechanical energy by

rotating the pedals of a stationary bike. These pedals rotate a shaft which is connected

3

to an alternator. The alternator converts this rotational energy to electrical energy,

outputting DC current using a rectifier. The generated 12V electricity is step down to 5V

to latch two relays (K1A and K2A). The system thus connected to the battery through

NO contact K1B and K2B. The energy is sent to a Morningstar Prostar-30 charge

controller, which provides the system with power and safely stores any excess energy in

a battery (requirement FR3).

User detection by pedalling is required to start the station, the system detects that a user

is pedalling using a magnetic sensor. Sensors are attached to the crankset of both

bikes, allowing the system to determine how many users are pedalling (requirement

FR1). The sensor detects the motion of the pedals and sends a signal to the system’s

microcontroller. As the microcontroller receives that signal, it latches a relay switch

allowing current to pass onto the charging circuitry. This process regulates the power

before providing it to the user’s mobile device. If the user stops pedalling for 10 seconds,

the microcontroller opens relay K3A and K4A, which shuts down the system through NO

contact K3B and K4B .

An LCD screen is used to show the user how much power they are generating as they

pedal, which can be used to educate users about sustainable energy (requirement

NFR1). This power value is recorded by the microcontroller using data from a power

measurement circuit, which measures the voltage and current at the output of the

alternator.

4

Figure 1: System Block Diagram

5

2. System Components
2.1. Power Generation

2.1.1. Alternator

An alternator is required to convert mechanical energy, provided by user when they

pedal, into usable electrical energy. We are using a WindBlue DC-520 permanent

magnet alternator to generate electrical energy to charge a 12V battery. It has a number

of features that fit well into our design:

● Reach 12V at a low RPM (rotations per minute) of 240 of the alternator - Since a

user will provide the rotational force the alternator needs to work at low RPM[1].

240 RPM in the alternator translates to 45 RPM for the user.

● Built-in rectifier - This converts alternating current to direct current which means

less external circuitry is required

● Completely brushless design - It reduces friction and minimizes the need for

maintenance (requirement NFR3)

It has been tested to generate more than 17.6 Watts with a single user and 44.7 Watts

with 2 users pedalling (FR1,C1) (see Validation Document, Appendix 1: Alternator

Power Generation). The measurement for the power output is taken at a low speed of

260 RPM of the alternator which translates to about 50 RPM for the user.

2.2. Energy Management

2.2.1. Charge Controller

A charge controller is required for our design to regulate the power generated by

pedalling on the bike. The user will pedal at different speeds which will generate

fluctuating level of power. The charge controller regulates the voltage input to a constant

6

voltage to charge a battery. The input power is used to power the load and any power

remaining charges the battery. The controller also prevents overcharging, and allows

safe delivery of power to a load. A simplified charge controller is shown in Figure 2.

Figure 2: Charge Controller Block Diagram

The charge controller we have selected is the Morningstar Prostar-30 (PS-30) which is

validated (see Validation Document, Appendix 4) and works very well for our design:

● High Current Input/Output - it has a max charging/load current of 30A which

prevents any damage done to the battery by surge currents[1]

7

● Protection Circuit - Short circuit, overload, and reverse polarity protection

● High Voltage/Current Disconnect - High voltage and high current disconnect for

surges and part failures

● Low self current consumption of 20mA - It is important as we need very low

passive power because our power input is only from a user pedalling

2.2.2. Battery

To store energy generated by the alternator (meeting requirement FR3) and to power a

load using a charge controller, we need a battery that is reliable and can be easily

replaced. This battery was also available at no cost from the AMS as it was used by a

previous capstone project. A lead acid battery made available to us was selected for this

application over other battery chemistries because of availability, reliability and cost.

The particular model is Rolls Surrette S12-128AGM, a 12V 128Ah AGM (Absorbent

Glass Mat) battery (see Validation Document, Appendix 4). The characteristics of this

battery is well suited for our system for the following reasons:

● 12V Nominal Voltage - Very easy to convert to 5V to power our circuitry.

● 115 AH Capacity (@ 100 hr rate) - A large capacity allows us to store the excess

generated energy, and ensure that a user’s mobile device can be charged

immediately even if the station has not been used for an extended period of time

(FR1)[2]

● Designed for small charges and discharges - This battery is designed for a car

which charges and discharges the battery a little bit at a time. We will be doing

the same thing and staying within the standard operating use of the battery.[2]

8

2.3. Power Measurement

2.3.1. Measurement Circuitry Overview

In order to educate users about how much power they are generating by pedalling

(requirement NFR1), the system requires appropriate circuitry to measure the power

coming from the alternator. This is done using the circuitry described by the schematic

below in Figure 3. It measures current and voltage independently, then sends those

values to the microcontroller to calculate the final value. A sample calculation can be

found in Appendix 1.

Figure 3: Power Measurement Circuitry Schematic

To measure the current, a ACS711EX current sensor board is used. The following

features makes it ideal for our system:

9

● Input current range of -15.5 to 15.5 A - Ensures that the full range of currents

being output from the alternator can be captured

● Current sensing resolution of 0.090 V/A - Gives high precision, making the power

calculation more accurate[4]

● 4 mA supply current at 3.3V to 5V - Minimizes the passive power draw, helping to

meet requirement FR3

● Read voltages and current from range 0V to 20.6V and -18A to 18A respectively

To measure the voltage, a simple voltage divider is required to make the alternator’s

12V output low enough to be read by the microcontroller (0-5V). Once the lowered value

is read by the microcontroller, we can easily convert the actual value. High resistor

values (100kΩ and 32kΩ) are used in order to ensure that the current sunk by the

microcontroller does not exceed its rated limit (~40mA). The circuit has been tested to

work to get data for the Result section of Appendix 1 of the Validation Document.

2.4. Microcontroller

A microcontroller is an integral part of our project as it acts as the main controller of the

system. Having a controller allows us to gather data and display them to the user, as

well as control parts of the circuit without having to make changes in the circuit.

We have chosen an Arduino Uno for our project. The Arduino Uno is easy to set up, has

a large library of code for different applications, a wide array of products tailored for its

use, and numerous tutorials on how to use it. The current use of the Arduino is listed

below:

● The Arduino controls the mobile device charging circuit by using a relay.

Providing an output voltage at the analog pin of the Arduino connected to the

relay will close the switch to the mobile device charging circuit.

● The Arduino is connected to a pair of magnetic sensors which gives an analog

signal input as soon at it detects pedal motion. When the bike station is not in use

for more than 10 seconds the Arduino powers off the system entirely by opening

10

relay K3A and K4A. More precisely, two NO (normally open) contacts (K3B,K4B)

will disconnect the system from the battery. This way we can ensure the system is

powered off after the user has stopped using the station.

● The current and voltage measurement circuit is connected to the analog input of

the Arduino. The Arduino uses an ADC (analog to digital converter) to read the

voltage and current value at its input and uses arithmetic operation to convert the

values into useful numbers. Gathering real time power generation data helps the

system determine if the user is generating enough power to charge a mobile

device (C1). The Arduino will not close the relay if the power generation is not

sufficient.

● Finally, the measurement circuit data is displayed to the user using an LCD

display (NFR1). The data on screen can be used to educated the user about the

effort required to generate power to charge a mobile device. This gives an insight

on the importance of energy conservation and the development/usage of

sustainable energy.

All the connections described above are provide in the schematics in Appendix 4.

Validation of the microcontroller is provided in Appendix 4, Validation Document.

Algorithm for the code is represented by the flowchart in Appendix 8.

2.5. Sensors

2.5.1. RPM / Pedal Detection

To detect if/how fast a user is pedalling, we are using a simple magnetic switch. The

switch itself is fixed to the bike shaft, and a magnet is attached to the shaft of the pedals.

The circuit is closed each time that the switch and magnet pass by each other, allowing

the Arduino to detect that a user is pedalling and to count the number of rotations the

user is pedalling. This information can be later displayed to the user as a rolling average

to show a relationship between rotations and power.

11

Each bike crankset will have its own magnetic switch, allowing the microcontroller to

detect how many users (1 or 2) are pedalling. This fulfills requirement FR1.

Using a magnetic switch is a suitable solution because of its simple implementation and

reliability.

3. System Design Implementation

3.1. Automatic System Startup and Shutdown

When the user starts pedalling, the alternator generates a voltage that latches relay K1

and K2 through a voltage regulator (5V). Stepping down the voltage allows the relay to

latch a very low power generation at about 30 RPM (see Validation Document Section

2). The NO contact of K1 and K2 connects the battery to the charge controller. This

allows all components of the system to be powered up. The microcontroller latches relay

K3 and K4. We can see in Figure 9 that the relays are connected in parallel with K1 and

K2 respectively. This logic circuit allows the microcontroller to keep the system up and

running during dips in user pedalling and even short periods of downtime between

users. When the system is idle for more than 10 seconds the microcontroller opens the

relay and the system turns off until another user starts pedalling.

We can see the state machine visualisation of the system in Figure 4. The system starts

in the ‘off’ state, when the user starts pedalling the system goes to the ‘setup stage’. At

this stage the controller is connected to the battery and this starts up the rest of the

system. It goes to ‘on’ state where the phone starts charging. If the user stops pedalling

momentarily, station is kept ‘on’ for 10 seconds. From here we can either stay in the ‘on’

state if the user resumes pedalling or we can go to the ‘off’ state if the user stops

pedalling for more than 10 seconds. More detailed flowchart can be found in Appendix 8.

Validation for the mentioned components are in Validation Document, Appendix 4.

12

Figure 4: State machine diagram

3.2. Mobile Device Charging Circuitry

A block diagram of the charging circuit is shown in Figure 5 (Appendix 2). The charge

circuit takes 12V from the charge controller and steps it down to 5V using a buck

controller, a switching voltage regulator which steps down voltage from a higher to lower

value. The selected buck controller, as shown in Figure 16 (Appendix 5), uses a

XL4051E1[5][6] chip to control the voltage and current at a specific level to charge a

mobile device battery. A cell mobile device commonly charges at 5V at 800mA. Figure 6

(Appendix 2) shows the circuit for the buck controller used. The resistors R1 and R2 are

variable resistors which can be adjusted to fix the voltage and current we require. The

board has two separate potentiometer to adjust the required voltage and current. The

controller has around 95% efficiency[7] when charging at 5V 1.5A as seen in Figure 8

(Appendix 2). The output of the controller is then fed into a universal charging cable,

allowing both Android or iOS devices to be charged (FR2). Validation for the

components in the charging circuitry is included in Validation Document, Appendix 4.

13

3.3. Safety

Safety of our system is of utmost importance. The wire used for the input end of the

system, (from the alternator to the charge controller) is 14 Gauge. The maximum power

generated by the user is 58.23 Watt (see Validation Document Appendix 1). At 12V this

gives a maximum current of 4.85A. 14 Gauge wire can handle a maximum of 24 A[9]

which is above the maximum input. The other reason why 14 gauge wire is used is

because the UL standard stipulate that the minimum gauge to be used for power

application is 14 AWG. The charge controller takes in all the power for the system and is

rated at 30A which is multiple times higher than the maximum current input. The wire for

the rest of the system is 22 Gauge, which sufficient for the current in the system as the

current is limited by fuses.

The alternator has a built-in rectifier which converts AC output to DC current. We are

using a commercial step down voltage regulator to charge a mobile device instead of an

inverter to convert the DC current to AC. Voltages more than 50V are dangerous[13] and

therefore stepping up voltage to 110V would have posed a safety issue. No component

in our system requires AC voltage, so we are able to avoid this. Furthermore, voltage in

the entire system is below 20V which is below the safe voltage value of 50V (constraint

C4). There is a fuse after the alternator to protect the system from any surge voltage or

currents. A fuse is placed where the user’s mobile device is connected and another to

the voltage input of the microcontroller.

Updating the components without proper knowledge or authorization can cause the

system to fail which may injure users. In order to prevent any user contact with

components and prevent them from being stolen (requirement NFR2), components such

as the battery, charge controller, and Arduino will be in a locked box below the station’s

table. This is represented by the blue box in Figure 10 (Appendix 4).

14

3.4. Edutainment System

In order to increase engagement and educate users about power

consumption/generation, the system is equipped with an entertainment/education

(edutainment) system (goal G1). This system comprises a 7” touchscreen (the 4D

Systems GEN4-ULCD-70DT, detailed below) that will be placed within arm’s reach of

both users. This screen educates users by contextualizing the power they are

generating. Users can see how many phones, laptops, gaming consoles, blenders,

toasters, and microwaves can be powered using the power they are generating at that

moment. This will allow users to gain an understanding of the power requirements of

their everyday activities and be inspired to effectuate their own sustainable energy

practices. Mockups of what is displayed on the screen are available in Appendix 7

(Figures 20 to 24).

With regards to entertainment and user engagement, both pedallers’ speeds will be

displayed on speedometers, enticing users to push themselves to generate more power.

Furthermore, riders will be able to start competitive games such as a race (Figure 22)

that allow two users to compete against each other while they are charging their phones.

The screen we selected, the GEN4-ULCD-70DT (Figure 19), has a number of features

that make it very suitable to integrate into the existing design:

● Touchscreen: Having a touchscreen allows for user input/selection, creating

increased engagement.

● Arduino support: The screen integrates very easily with the Arduino currently

running the system, requiring only 2 pins for a serial connection

(transmission/receiving) and a reset pin. Additionally, 4D systems have a publicly

available library[12] of functions that allows for easy implementation &

maintenance of code that communicates with the screen.

15

● Development tools / documentation: GUIs can be easily created/updated in 4D

Systems Workshop 4, allowing for rapid development.

4. Design Recommendations

We believe that the electrical system is complete and should not require further design

work. However, the mechanical system design (which does not fall under the scope of

this document) has a number of areas that require attention. These include, but are not

limited to:

● Realignment and welding of the left bike shaft to the gearbox. It is currently

damaged, meaning only one user can currently pedal on the station.

● Seat height adjustment. The present height of the seats makes it difficult for

shorter users to enjoy the station.

● The current gearbox used is a differential gearbox. This type of installation is not

ideal for this application. In fact, this gearbox is designed to avoid one axle to

rotate faster than the other. (This is engineered to work as a traction control) At

the moment if one user peddle faster than the other, the axle internally skip turns

in order to regulate both axle differential speed. This reduce considerably the

output power of the system. Most of the energy produced by the user will be lost

within the gearbox instead of being directly transferred to the alternator. In

conclusion, the gearbox should not have the ability of traction control. One option

would be to add a second alternator and connect each bike directly to an

alternator.

● When a mechanical force is applied to the shaft of an alternator, an opposing

force called back EMF is generated. This force is proportional to the mechanical

force being applied. The faster the user peddles, the bigger the mechanical force

on the shaft is and the bigger the back EMF force will be. This phenomenon

16

cause the biking experience to be very inconsistent. Using a inertia wheel, it

would be possible to reduce the direct impact of back EMF. In fact, the inertia

wheel will reduce considerably the real time effect of the back EMF on the

peddler experience. In other words, once the user has reach a cruising speed

using the inertia wheel, the angular momentum of the wheel will absorb the

variation in back EMF force that the user would previously experience.

17

References

[1] WindBlue Power, “DC-520 High Wind Permanent Magnet Alternator,” DC-520
datasheet. [Online]. Available:
http://www.windbluepower.com/Permanent_Magnet_Alternator_Wind_Blue_High_Wind_
p/dc-520.htm [Accessed: Nov. 1, 2016].

[2] Morningstar, “ProStar Solar Controller,” ProStar 30 Datasheet, 2014. [Online].
Available:
http://www.morningstarcorp.com/wp-content/uploads/2014/02/ProStarENG2_11.pdf
[Accessed: Nov. 1, 2016].

[3] Surrette/Rolls, “S12-128AGM Deep Cycle Battery,” S12-128AGM Datasheet.
[Online]. Available:
http://pdf.wholesalesolar.com/battery-folder/Rolls-Surrette-S12-128-AGM-Battery-Specifi
cations.pdf?_ga=1.70449812.589188730.1477952395 [Accessed: Oct. 15, 2016].

[4] Allegro Microsystems, LLC, “Hall Effect Linear Current Sensor with
Overcurrent Fault Output for <100 V Isolation Applications,” ACS711 Datasheet, 2013.
[Online]. Available: https://www.pololu.com/file/0J497/ACS711.pdf [Accessed: Oct. 24,
2016].

[5] DROK, “Numerical Control Voltage Switching Regulator DC Buck Converter
with Red LED Voltmeter 35V to 24V to 12V to 5V Adjustable 5-34V to 0-33V Step Down
Variable Volt Power Supply Stabilizers Car Battery,” LM2596 Datasheet. [Online].
Available:
http://www.droking.com/wp-content/uploads/2016/04/DATASHEET_090029.pdf
[Accessed: Nov. 5, 2016].

[6] DROK, “DC-DC Step-down Constant Current & Voltage Converter 4-38V to
1.25-36V 12V/24V Buck Voltage Regulator 5A 75W High Power LED Constant Current
Driver Module for Lithium Battery Electromobile Charging,” Current & Voltage Converter
Datasheet. [Online]. Available:
http://www.droking.com/wp-content/uploads/2016/04/Datasheet_091016.pdf [Accessed:
Nov. 5, 2016].

18

http://www.windbluepower.com/Permanent_Magnet_Alternator_Wind_Blue_High_Wind_p/dc-520.htm
http://www.windbluepower.com/Permanent_Magnet_Alternator_Wind_Blue_High_Wind_p/dc-520.htm
http://pdf.wholesalesolar.com/battery-folder/Rolls-Surrette-S12-128-AGM-Battery-Specifications.pdf?_ga=1.70449812.589188730.1477952395
http://www.morningstarcorp.com/wp-content/uploads/2014/02/ProStarENG2_11.pdf
http://www.droking.com/wp-content/uploads/2016/04/DATASHEET_090029.pdf
http://www.droking.com/wp-content/uploads/2016/04/Datasheet_091016.pdf
https://www.pololu.com/file/0J497/ACS711.pdf
http://pdf.wholesalesolar.com/battery-folder/Rolls-Surrette-S12-128-AGM-Battery-Specifications.pdf?_ga=1.70449812.589188730.1477952395

[7] XLSEMI, “5A 180KHz 36V Buck DC to DC Converter,” XL4015 Datasheet,
Rev. 1.3. [Online]. Available: http://www.xlsemi.com/datasheet/xl4015%20datasheet.pdf
[Accessed: Nov. 5, 2016].

[8] The Engineering ToolBox, “Wire Gauges - Current Ratings”,
http://www.engineeringtoolbox.com [Online]. Available:
http://www.engineeringtoolbox.com/wire-gauges-d_419.html [Accessed: Oct. 11, 2016].

[9] M. Kang, A. Kung, A. Liu and G. Merced, “AMS SolePower Station
Improvement - The EnerCycle Machine,” Dept. Mech. Eng., Univ. of British Columbia.,
Vancouver, Proj. Report, Apr. 2016. [Online]. Available:
https://sustain.ubc.ca/sites/sustain.ubc.ca/files/seedslibrary/Final%20Report%20-%20T1
5%20Sprouting%20Solutions_0.pdf [Accessed: Sep. 20, 2016].

[10] V. Bai, S. Car, J. Huang, J. Jiang and L. Woyceshyn, “Mech 45X AMS Seed
Project Proposal,” Dept. Mech. Eng., Univ. of British Columbia., Vancouver, Proj.
Proposal, Oct. 2014.

[11] Texas Instruments, “LM317L-N 3-Terminal Adjustable Regulator,” LM317L-N
Datasheet, 2016. [Online]. Available: http://www.ti.com/lit/ds/symlink/lm317l-n.pdf
[Accessed: Oct. 24, 2016].

 [12] GitHub, “GitHub - 4dsystems/ViSi-Genie-Arduino-Library: ViSi-Genie -

Arduino Library", Arduino Library, 2017. [Online]. Available:

https://github.com/4dsystems/ViSi-Genie-Arduino-Library [Accessed: Feb. 14, 2017].

[13] W. Burr, “Guide to the Canadian Electrical Code, Part I — Instalment 6",

Electrical Industry Canada [Online]. Available:

http://electricalindustry.ca/latest-news/1671-guide-to-the-canadian-electrical-code-part-i-i

nstallment-6 [Accessed: Apr. 5, 2017].

19

https://sustain.ubc.ca/sites/sustain.ubc.ca/files/seedslibrary/Final%20Report%20-%20T15%20Sprouting%20Solutions_0.pdf
http://www.engineeringtoolbox.com/wire-gauges-d_419.html
https://github.com/4dsystems/ViSi-Genie-Arduino-Library
http://www.engineeringtoolbox.com/
http://www.ti.com/lit/ds/symlink/lm317l-n.pdf
https://sustain.ubc.ca/sites/sustain.ubc.ca/files/seedslibrary/Final%20Report%20-%20T15%20Sprouting%20Solutions_0.pdf
http://electricalindustry.ca/latest-news/1671-guide-to-the-canadian-electrical-code-part-i-installment-6
http://www.xlsemi.com/datasheet/xl4015%20datasheet.pdf
http://electricalindustry.ca/latest-news/1671-guide-to-the-canadian-electrical-code-part-i-installment-6

Appendices

Appendix 1: Sample Power Measurement Calculations

Suppose that the alternator is outputting 18W, or 12V at 1.5A.

1. We first need to send readings to the microcontroller.

A) Applying the divider shown in Figure 3, we get an output voltage of

2V 2.91V1 * 32kΩ
(32+100)kΩ =

B) For current, the ACS711EX will output as shown by the equation found on

the datasheet. We use the input current of 1.5A as . i

out i V = 2
V cc + * V cc36.7A

out 1.5A .58V V = 2
4.775V + * 36.7A

4.775V = 2

2. Once these two values are sent to the microcontroller, we can extract the real values
from the measurements in the code

A) For voltage, we simply rearrange the equation from the voltage divider

.91V 12V2 * 32kΩ
(32+100)kΩ =

B) Then current, using the equation found on the ACS711EX datasheet. We

use Vout from above and 4.775V as Vcc.

 36.7A 18.3Ai = * V cc
V out −

 36.7A 18.3A 1.5Ai = * 2.58V
4.775V − =

3. Finally, we simply multiply the two values to obtain the power

20

P = V * I

2V .5A 18WP = 1 * 1 =

Appendix 2 : Mobile Device Charging Diagrams

Figure 5 : Block Diagram of Mobile Device Charger

21

Figure 6 : Adjustable Current Limiter Circuit[11]

Figure 7 : Adjustable Voltage Regulator Circuit[6]

22

Figure 8 : Efficiency Graph of Buck Regulator[6]

Appendix 3 : Bill of Materials

Quantity Description 1 Description 2 Item Cost Validate
d

1 Fuse 1.5A, 3A, 15A Fuse $16.00
1 Relay 2-Channel Relay $9.39 ✔
1 Relay 16-Channel Relay $19.89 ✔

1 DC-520 High Wind Permanent
Magnet Alternator Motor $219

1 Arduino Uno Microcontrolle
r $30 ✔

2 DROK® DC-DC Step-down
Constant Voltage Converter

Input 5-40V
Ouput 1.25-37V Regulator $17 ✔

23

2
DROK® DC-DC Step-down
Constant Current & Voltage

Converter

Input 6-32V
Output 1.25-32V

4.5A 35W
Regulator $20 ✔

1 100K Ohm Resistor 1/4W Resistor $0.10
1 30K Ohm Resistor 1/4W Resistor $0.10
1 220 Ohm Resistor 1/4W Resistor $0.10

1 1K Ohm Potentiometer Variable
Resistor $5.35

1 Magnetic Sensor Sensor $8.98 ✔

1 Basic 16x2 Character LCD - Black
on Green 5V LCD Display $9.49 ✔

1 ProStar Charge Controller, 30A,
12/24VDC, PS-30 Controller $163.93 ✔

1 Surrette Rolls S12-128AGM 12V
115 AH AGM Battery Battery $357.95

1 ACS711EX CURRENT SENSOR
CARRIER -15.5A TO +15.5A

CURRENT
SENSOR -15.5A

TO +15.5A
 $6.00 ✔

1 GEN4-ULCD-70DT DISPLAY
LCD TFT 7.0" 800X480 Touchscreen 234.94

 Total $1118.56

24

Appendix 4 : System Schematics

Figure 9 : Electrical Schematic of Mobile Device Charging Station

25

Figure 10: Arduino Board with LCD Schematics

26

Figure 11: Power Distribution Circuit Schematic

27

Appendix 5 : System Figures

Figure 12: Picture of Overall System[10]

Figure 13: Magnetic Switch Sensor

28

Figure 14: Windblue 520 Alternator[1]

Figure 15: MorningStar ProStar-30 Charge Controller[2]

29

Figure 16: DROK CC CV Regulator[6]

Figure 17: Surrette Rolls S12-128AGM 12V 115 AH AGM Battery[3]

30

Figure 18: 16-Channel Relay

Figure 19: 4D Systems GEN4-ULCD-70DT

31

Appendix 6: Arduino Code

/* Author: Capstone group PL-23
 * Date: 05.04.2017
 * Description: Main Arduino Framework for Sole Power-Up Project. V3.0.
 *
 * References: https://www.arduino.cc/
 *
 *
 */

// Libraries
#include <avr/interrupt.h>
#include <avr/power.h>
#include <TimerOne.h>
#include <genieArduino.h> //Library and some code/comments from 4D systems Github
https://github.com/4dsystems/ViSi-Genie-Arduino-Library

// Pins
int sensorPin1 = 2; // Sensor 1
int sensorPin2 = 3; // Sensor 2
int chargingPin = 10; // Phone charging relays (K6)
int chargingPin2 = 11; // Phone charging relays (K7)
int powerPin = 9; // Power relays
#define RESETLINE 4

// Constants
const int DEBOUNCE = 100;
const int RESET_TIME = 3;
const int STPCHRG = 5; // Power down time constant in seconds
const int PWRDWN = 10; // Power down time constant in seconds
const int PHONE = 5;
const int NINTENDOSWITCH = 39;
const int MACBOOKPRO13 = 61;
const int BLENDER = 300;
const int TOASTER = 800;
const int MICROWAVE = 1000;

// Variables
int rpm; //This is the value we intend to calculate.
int rpm2; //This is the value we intend to calculate.
volatile int sensor_count = 0;
volatile int sensor_count2 = 0;
volatile int race_count = 0;
volatile int race_count2 = 0;
volatile int seconds = 0;
int rate_flag = 0;
int power_flag = 0;
int sensor_flag = 0;
int sensor_flag2 = 0;
int charging_flag1 = 0;
int charging_flag2 = 0;
int power_down_count = 0;

// Voltage Measurement Variables

32

float sample1;
float sample2;
int record;
float voltage;
float current;
int power;
int power2;

// To control the touchscreen
 Genie genie;
 static long waitPeriod;
 int currentForm;

void setup() {

 // Touchscreen setup
 currentForm = 0;

 pinMode(chargingPin, OUTPUT);
 pinMode(chargingPin2, OUTPUT);
 digitalWrite(chargingPin, HIGH); // Charging relay off
 digitalWrite(chargingPin2, HIGH);

 pinMode(powerPin, OUTPUT);
 digitalWrite(powerPin, LOW); // Power relay on

 // setup code here
 pinMode(sensorPin1, INPUT_PULLUP); //Sets the pin as an input
 attachInterrupt(digitalPinToInterrupt(sensorPin1), Rate_interrupt, RISING); //Configures
interrupt 0 (pin 2 on the Arduino Uno) to run the function "Rate"

 // setup code here
 pinMode(sensorPin2, INPUT_PULLUP); //Sets the pin as an input
 attachInterrupt(digitalPinToInterrupt(sensorPin2), Rate_interrupt2, RISING); //Configures
interrupt 0 (pin 2 on the Arduino Uno) to run the function "Rate"

 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(LED_BUILTIN, LOW);

 // Initialize timer1, and set a 1 second period
 Timer1.initialize(1000000);
 Timer1.attachInterrupt(timerInterrupt);

 Serial.begin(115200);
 genie.Begin(Serial); // Use Serial0 for talking to the Genie Library, and to the 4D
Systems display
 genie.AttachEventHandler(myGenieEventHandler); // Attach the user function Event Handler
for processing events

 pinMode(RESETLINE, OUTPUT);
 digitalWrite(RESETLINE, 0); // Reset the Display via D4
 delay(1000);
 digitalWrite(RESETLINE, 1); // unReset the Display via D4

 delay (5000); //let the display start up after the reset (This is important)

 genie.WriteContrast(10); //0-15 for Brightness Control, where 0 = Display OFF, though to
15 = Max Brightness ON

33

}

void loop() {
 unsigned long current = millis();
 static unsigned long previous = 0; // record current and previous interrupt time for
debouncing

 unsigned long current2 = millis();
 static unsigned long previous2 = 0; // record current and previous interrupt time for
debouncing

 interrupts(); //Enables interrupts on the Arduino

 genie.DoEvents();
 UpdateTouchscreen();

 // put main code here, to run repeatedly:

 if (sensor_flag == 1)
 {
 if ((current - previous) > DEBOUNCE) // 100ms
 {
 sensor_flag = 0;
 sensor_count++; //Every time this function is called, increment "count" by 1
 if(charging_flag1==1)
 digitalWrite(chargingPin, LOW); // Charging relay on
//

 if(currentForm == 2){
 race_count += 2;
 }
 digitalWrite(LED_BUILTIN, !digitalRead(LED_BUILTIN));
 power_down_count = 0; // Reset power_down_count
 charging_flag1 = 1;

 previous = current;
 }
 }

 if (sensor_flag2 == 1)
 {
 if ((current2 - previous2) > DEBOUNCE) // 100ms
 {
 sensor_flag2 = 0;
 sensor_count2++; //Every time this function is called, increment "count" by 1
 if(charging_flag2==1)
 digitalWrite(chargingPin2, LOW); // Charging relay on
//

 if(currentForm == 2){
 race_count2 += 2;
 }
 power_down_count = 0; // Reset power_down_count
 charging_flag2 = 1;

34

 previous2 = current2;
 }
 }

 if (rate_flag == 1)
 {
 noInterrupts(); //Disable the interrupts on the Arduino
 rate_flag = 0;
 rpm = 60.0*sensor_count/RESET_TIME+random(-3,3);
 rpm2 = 60.0*sensor_count2/RESET_TIME+random(-3,3);

 //Rate = // some math to include time
 sensor_count = 0; // Reset the counter so we start counting from 0 again
 sensor_count2 = 0; // Reset the counter so we start counting from 0 again

 }

 if (power_flag == 1)
 {
 noInterrupts(); //Disable the interrupts on the Arduino
 power_flag = 0;

 sample1=analogRead(A1); // read the voltage from the divider circuit
 sample2=analogRead(A2); // read the current from the current mesuring circuit

 voltage=(sample1*4.0816641*5/1024); // voltage calculation
 current=(((36.7*sample2)/(1024))-18.418); // current calculation
 power= voltage*current; //
 power2 = power * 10;

/*
 Serial.println("Rate:");
 Serial.println(Rate); //Print the variable Rate to Serial
 Serial.println("Voltage:");
 Serial.println(voltage); //Print the variable voltage to Serial
 Serial.println("Current:");
 Serial.println(current); //Print the variable current to Serial
*/

 // Reset samples
 sample1=0;
 sample2=0;

 }

// if (power_down_count == STPCHRG) // if system hasn't been used in PWRDWN seconds
// {
// // open IO8
// digitalWrite(chargingPin, HIGH); // Charging relay off
// }

 if (power_down_count == PWRDWN) // if system hasn't been used in PWRDWN seconds
 {
 // open IO9
 digitalWrite(powerPin, HIGH); // Power relay off
 }

}

35

void Rate_interrupt()
{
 sensor_flag = 1;
}

void Rate_interrupt2()
{
 sensor_flag2 = 1;

}

// Timer reset ISR
void timerInterrupt(void)
{
 seconds++;

 power_down_count++;

 power_flag = 1;

 if (seconds == RESET_TIME)
 {
 seconds = 0;
 rate_flag = 1;
 }
}

//
//void UpdateTouchscreen(void)
//{
// genie.WriteObject(GENIE_OBJ_COOL_GAUGE, 0,44); //Rider 1 Speed
//}

// Genie (Touchscreen) event handler
void myGenieEventHandler(void)
{
 genieFrame Event;
 genie.DequeueEvent(&Event);

 if (Event.reportObject.cmd == GENIE_REPORT_EVENT)
 {
 if (Event.reportObject.object == GENIE_OBJ_FORM)
 {

 if (Event.reportObject.index == 0)
 {
 currentForm = 0;
 }
 if (Event.reportObject.index == 1)
 {
 currentForm = 1;
 }
 if (Event.reportObject.index == 2)
 {
 currentForm = 2;
 }
 if (Event.reportObject.index == 3)
 {

36

 currentForm = 3;
 }
 if (Event.reportObject.index == 4)
 {
 currentForm = 4;
 }
 if (Event.reportObject.index == 5)
 {
 currentForm = 5;
 }
 if (Event.reportObject.index == 6)
 {
 currentForm = 6;
 }
 if (Event.reportObject.index == 7)
 {
 currentForm = 7;
 }
 if (Event.reportObject.index == 8)
 {
 currentForm = 8;
 }
 if (Event.reportObject.index == 9)
 {
 currentForm = 9;
 }
 if (Event.reportObject.index == 10)
 {
 currentForm = 10;
 }

 }
 }
}

void UpdateTouchscreen(void)
{

 if(rpm < 0)
 {
 rpm = 0;
 }
 if(rpm > 200)
 {
 rpm = 200;
 }
 if(rpm2 < 0)
 {
 rpm2 = 0;
 }
 if(rpm2 > 200)
 {
 rpm2 = 200;
 }

 //Need to send int for all WriteObject data parameters
 if(currentForm == 0) //Main screen (green)
 {
 genie.WriteObject(GENIE_OBJ_COOL_GAUGE, 0, rpm2); //Rider 1 Speed

37

 genie.WriteObject(GENIE_OBJ_COOL_GAUGE, 3, rpm); //Rider 2 Speed
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 3, power2); //Total watts

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 0, 10*power/PHONE); //Number of phones (5W)
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 1, 100*power/NINTENDOSWITCH); //Number of
laptops
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 2, 100*power/MACBOOKPRO13); //Number of taco13

 }
 if(currentForm == 1) //Main screen (orange)
 {
 genie.WriteObject(GENIE_OBJ_COOL_GAUGE, 1, rpm2); //Rider 1 Speed
 genie.WriteObject(GENIE_OBJ_COOL_GAUGE, 2, rpm); //Rider 2 Speed
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 7, power2); //Total watts

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 4, 10*power/PHONE); //Number of phones
(5W)
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 5, 100*power/NINTENDOSWITCH); //Number of
laptops
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, 100*power/MACBOOKPRO13); //Number of
tacos

 }

 if(currentForm == 9) //Main screen (green)
 {
 genie.WriteObject(GENIE_OBJ_COOL_GAUGE, 4, rpm2); //Rider 1 Speed
 genie.WriteObject(GENIE_OBJ_COOL_GAUGE, 5, rpm); //Rider 2 Speed
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 11, 10*power); //Total watts

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 8, 100*power/BLENDER); //Number of phones (5W)
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 9, 100*power/TOASTER); //Number of laptops
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 10, 100*power/MICROWAVE); //Number of taco13

 }
 if(currentForm == 10) //Main screen (orange)
 {
 genie.WriteObject(GENIE_OBJ_COOL_GAUGE, 6, rpm2); //Rider 1 Speed
 genie.WriteObject(GENIE_OBJ_COOL_GAUGE, 7, rpm); //Rider 2 Speed
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 15, 10*power); //Total watts

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 12, 100*power/BLENDER); //Number of phones
(5W)
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 13, 100*power/TOASTER); //Number of laptops
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 14, 100*power/MICROWAVE); //Number of tacos

 }
 if(currentForm == 2) //Race screen
 {
 genie.WriteObject(GENIE_OBJ_GAUGE, 0, race_count2); //Rider 1 bar
 genie.WriteObject(GENIE_OBJ_GAUGE, 1, race_count); //Rider 2 bar

 if(race_count == 100)
 {
 genie.WriteObject(GENIE_OBJ_FORM, 8, 0);
 currentForm = 8;

38

 }

 if(race_count2 == 100)
 {
 genie.WriteObject(GENIE_OBJ_FORM, 7, 0);
 currentForm = 7;
 }
 }
 if(currentForm == 3) //Press button to start race
 {
 race_count=0;
 race_count2=0;
 }
 if(currentForm == 4) //Countdown 3
 {
 delay(1000);
 genie.WriteObject(GENIE_OBJ_FORM, 5, 0);

 currentForm = 5;
 }
 if(currentForm == 5) //Countdown 2
 {
 delay(1000);
 genie.WriteObject(GENIE_OBJ_FORM, 6, 0);

 currentForm = 6;
 }
 if(currentForm == 6) //Countdown 1
 {
 delay(1000);
 genie.WriteObject(GENIE_OBJ_FORM, 2, 0); //Start race

 currentForm = 2;
 }

 if(currentForm == 7) //Rider 1 wins race, press button to go back to main screen
 {
 race_count=0;
 race_count2=0;
 }
 if(currentForm == 8) //Rider 2 wins race, press button to go back to main screen
 {
 race_count=0;
 race_count2=0;
 }

}

39

Appendix 7: Edutainment System Mockups

Figure 20: Main entertainment system screen (low power items)

Figure 21: Main edutainment system screen with alternate theme (low power items)

40

Figure 22: Race between the two users

Figure 23: Main entertainment system screen (high power items)

41

Figure 24: Main edutainment system screen with alternate theme (high power items)

42

Appendix 8 : Microcontroller Algorithm Flowchart

43

