UBC Social Ecological Economic Development Studies (SEEDS) Student Report

Bin Fun Game
Brandon Chan, Calvin Chan, Chris Yoon, Sebastian Lee, Stephanie Lam
University of British Columbia
EECE 409/429/419/439/400/469
April 15, 2016

Disclaimer: “UBC SEEDS Program provides students with the opportunity to share the findings of their studies, as well
as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this
is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these
reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned

in a report or a SEEDS team representative about the current status of the subject matter of a project/report”.

P1.40 - BIN FUN GAME

Final Project Report

Brandon Chan
Calvin Chan
Chris Yoon

Sebastian Lee

Stephanie Lam

Executive Summary:

A system was designed to keep track of the number of items thrown into one of the
recycling bins in the Nest at the Vancouver campus of the University of British Columbia.
Currently, many items found in these bins have been recycled incorrectly. The ultimate goal of
the system described in this report is to engage bin users and motivate them to recycle properly.
The system was constrained to be easy-to-use, inexpensive, water-resistant, low maintenance,

and secure enough to withstand movement and theft.

The purpose of this document is to review the initial phase of the Bin Fun Game project.
Three separate documents regarding the initial phase of the project are included in the final
report that are labeled; requirements, design and validation. Each document can be found in the
listed order. The requirements document outlines the requirements, constraints and goals of the
project. The design document outlines all of the decisions considered during the creation of the
project. Finally, the validation document outlines the testing strategies and how each requirement
is met. The project owners encourage readers to gain knowledge from this report and help to

contribute to the project’s initiative.

P1.40 - BIN FUN GAME

Requirements Document

A W N -

TABLE OF CONTENTS

INTRODUCTION ...
FUNCTIONAL ASPECTS
NON-FUNCTIONAL ASPECTS

CONSTRAINTS
FUTURE RECOMMENDATIONS

1 INTRODUCTION

UBC, as part of the Zero Waste Action Plan', aims to encourage people on campus to
reduce and recycle waste. As described by our clients, the current problem is that there are still a
significant number of waste items that are consistently placed incorrectly into the recycling
stations. The client’s goal for this project is to design and test a Fun Theory product, that will
engage campus users and motivate them to recycle properly. The Fun Theory, an initiative of
Volkswagen, states that “something as simple as fun is the easiest way to change people’s

behaviour for the better.”?

Success of the project will be justified by the satisfaction of the user requirements and
constraints by the development team. A successful project would perform well by being able to
detect when any item is placed in the recycling station. The project should also be easily
maintainable, robust and allow for change. A final component of success is that the entire project

can be completed within the allotted budget for a capstone project.

' https://sustain.ubc.ca/campus-initiatives/recycling-waste/what-ubc-doing/waste-action-plan
2 hitp://www.thefuntheory.com/

http://www.thefuntheory.com/

2 FUNCTIONAL ASPECTS

Requirement Actors Goal
R1 Client (Researchers), | An automated method of counting the number of
System (Used data to | items dropped into each individual waste bin. This
display), End Users counting method will be referred to as a frequency
(Students or any other | counter.
individual walking by)
R2 Client (Researchers), | A database that is able to store and modify the
System following frequency counter data:
e Time and date.
e Specific bin information such as unique
identification numbers and location.

R3 Client (Researchers) A user-interface that our clients can use to make
changes to the database from R2. These changes
must allow our client to:

e Download signal data from R1 from the
database from specific date ranges.

e Input accuracy data into the database for a
particular date.

R4 End Users (Students The final product must have the system users

or any other engage physically with the recycling stations. Our

individual walking by) | client with the background in psychology, believes
that a physical aspect of the game will help to
increase user engagement.

R5 Clients and future The project must be maintainable in the sense that

systems crew

the project client should be able to preserve the
longevity of our project and continue developing
the product after we have stopped working on it.

e R5.1 The hardware must be accessible; in
the event that a broken module needs to be
replaced, a system administrator should be
able to replace the broken modules.

e RS5.2 The software must be susceptible to
change; in the event that a feature needs to
be added, modified or removed, a system
administrator should be able to do so.

3 NON-FUNCTIONAL ASPECTS

Non-functional aspects: what quality attributes the product needs to exhibit; the “ilities”:

reliability, security, portability, interoperability, etc.
The qualities that our product needs to exhibit are:

e Reliability: The product needs to be reliable in terms of:
o Accuracy of the signal data. The frequency counter [R1] needs to be able to
record the accurate time of when an object is dropped into a bin. The frequency
counter also needs to be able to have a high rate of detecting items.

o Database. The transfer of data must be reliable as to maintain the correctness of

all the data.
e Security: The product will need to be secure in terms of:
o Physical security of hardware. The hardware must be securely fastened to the bins
as to avoid theft of the system components.
o Security of the software is not a priority for this product.
e Portability: The product will need to be portable in terms of:
o Physically able to switch the entire system to another bin without much work.
e Interoperability: The product will need to be interoperable in terms of:

o This quality ties in with R5, in which the system must be susceptible to change

and easily integratable.

4 CONSTRAINTS

C1. The design cannot exceed current floor plan of the recycling bins. The project design cannot
obstruct the current floor plan of the NEST. The project must be designed to fit any bin,

regardless of location.

C2. The project design must not interfere with or burden a janitor’s process of cleaning. If the
system is to be mounted inside the recycling bin, there must be enough clearance so that the
janitor’s process is not disturbed while removing the bins. There is currently 2-3” of clearance

inside the bin (see Appendix A.2).

C3. The system must be detachable or able to move with the bin.

C3.1 All four recycling bins are not connected together but are instead m
|

in pairs. The system must be usable for all 4 bins but still able to move

the pairs apart. (Figure 2)

‘{: |

Figure 2:Recycling Bin Pairs
C4. The system should be robust as well as the following:
C4.1 Should be water-resistant so that any liquid spillage has a low chance of damaging the
hardware.
C4.2 Should be securely fastened so that parts are not easily stolen through force.

C4.3 Should be securely fastened so that no parts fall off when the bin is moved.
C5. A power source is needed for all hardware components.

C6. No custom hardware should be used in the design. Any broken parts should be easily

obtainable and replaceable.

C7. The system cannot be annoying for users. The system will be placed in high-traffic areas and
should not disturb anyone in the area.
C7.1. The system cannot make too much noise.

C7.2. The system cannot produce too much light.

C8. The interface should be simple and easily understandable for all users.

C9. Budget: $650

4 Future Recommendations

This section of the document is a list of tasks that we recommend for the client to
consider if chosen to extend the project in the future. The following tasks were not discussed

with the client and so they have not been included in the section above.

1. A script that would automatically start the system as well as other scripts necessary for
the system to function well. The startup script would take in a bin location as a parameter.

2. A new type of sensor to detect when items are thrown into the bins. Please see the Design
Document for more detail on the issue.

3. Fix issue a user-interface issue on the web application game; there is an extra button on
the top left the screen.

4. Create a script or modify the system to automatically delete old files from the SD card as
well as the database. Both methods or storage will become full over time without

intervention.

P1.40 - BIN FUN GAME

Design Document

TABLE OF CONTENTS

INTRODUCTION oottt ettt e sav e ereesaseesaeesnnas

1.1 High Level OVEIVIEWccooviiiiiiiiieiieeie ettt

1.2 High-Level Software ArchiteCturecoccveeiiierieeiiierie e
1.3 Client-Server ATChItECTUIE cccviieeiieeeiie ettt e

1.4 Programming Language DeciSION cccccoeieviiieeriiieeiieeciiee e esiee e

REQUIREMENT 1 DECISIONS ..ot

2.1 INErOAUCTION ..ot et

2.2 Final Microcontroller DeCiSIONcccccceeeciieeiiieeriieerieeeeiee e evee s

2.3 Final Sensor DECISION cc.ceeviiieiiieeiiieeiie ettt

2.4 Tested Alternate DECISION 1c.cooiieiiiiiieiieiiieiieeie et
2.5 Tested Alternate DECISION 2oecuieriieiiieiiieiiie ettt
2.6 Proposed Alternative to Final Decisionccccccceeviieeiiieecieeeieeeee e

REQUIREMENT 2 DECISIONS ..ottt

3.1 INErOAUCTION ..ottt e e

3.2 Storage on SD Cardccceeviiiiiieiieeee e

33 Remote Database ooooiiieiice e

REQUIREMENT 3 DECISIONS ..ot

4.1 Introduction .

4.2 Monitor Display ..o

4.3 Web Application GAmE ..ottt

REQUIREMENT 4 DECISIONS ..ottt
5.1 INtrodUCHION ..ot e

5.2 Client Interface to Access Databaseccccceevieriiiiiienieniieieceeee e,

53 Client Interface to Update Accuracy SCOT€ccceeevveerciirenciieeriieeeree e,

5.4 Programming Language DeCiSIONcccceevciieeiiieeiiieeniieeeiieeeieeeeieeeieee e

5.5 Implementation of Client-Server Architectureccoecveevierieenieeieennenne,

REQUIREMENT S DECISIONS ...,
6.1 INtrodUuCtion eii e
6.2 Hardware COmpPONentscoouiiuiieiieieaie i e e e,

6.3 i a8 ottt
6.4 DoCUMENTATION ...ttt e
CONCLUSION ..ottt ettt ettt se e e s enseeneens
7.1 SYSEEM OVETVIEW ...vviiiiiiieeiieeeiieeeieeesteeesteeesteeetaeeeaaeessaeessseeessseesnnseesnsees

7.2 Conclusion

List of Figures
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:

LIST OF ILLUSTRATIONS

Flowchart of Major Subcomponents

High-Level Software Architecture of System
Diagram of Client-Server Architecture

Schematic of Laser Solution

Screenshot of Monitor Display

Screenshot of Homepage of Web Application
Screenshot of Gameplay of Web Application
Screenshot of Client Interface to Access Database
Screenshot of Client Interface to Access Database
In-depth Diagram of Client-Server Architecture
3D Image of Raspberry Pi Case Base

3D Image of Raspberry Pi Case Lid

System Overview

1 INTRODUCTION

1.1 High-Level Overview

The major subcomponents of this project was a microcontroller, sensor, display and
database. These components are assembled as depicted in Figure 1. A sensor is attached
underneath the lid of the recycling stations, and streams data into a microcontroller. The

microcontroller will continuously and simultaneously update a database and a display.

‘ Sensor i

M

L Microcontroller

’ Display ‘ ’ Database ‘

Figure 1. Flowchart of Major Subcomponents

1.2 High-Level Software Architecture

The image below depicts the software architecture that is used for the sensor,

microcontroller and the database. There are 5 software classes that are used in the project;

sensor, queue, buffer, main and SD. The role of each class is as follows:

{Sensorun}} [Saﬂsm{lﬁ}] {Bensnr{lﬂ}] {S&ns&:r(lﬁ}} [Smsur{lﬂ}] [Sensnr{lﬂ}] {Sanam{rﬂ}l} [Smsnr (IH}]

|

Queve Queve Cueue Queue
[Polls every 500ms) {Folls every 500ms) (Polls every 500ms) (Polls every 500ms)

b ™
[>
Cal -

Buffer

b -

v

& 2y

Main (Microcontroller)

- >

Figure 2. High-Level Software Architecture of System

e Sensor: Specifies which GPIO pins on the Raspberry Pi the sensor must be attached to, as

well as which colour bin each sensor should be placed in. The sensor class will utilize
two individual sensors to detect an item that is dropped in the bin, and store a timestamp
when done so. When an item is detected, the sensor class records the date, time, color of
bin, and location the item is placed, in a string variable. The stored string variable is
expected to be copied into a queue, and the variable is then overwritten by another signal.
Queue: The queue class uses a deque as the internal data structure. Upon initialization,
the queue class creates a sensor object. The role of the queue class is to check, every 500
milliseconds, if the sensor class has detected any items placed into the bin. The 500
millisecond wait is created so that if the two sensors in the same bin detect an item, the
item would not be counted twice. The queue is designed to be able to quickly retrieve
multiple signals from the sensors before the buffer reads from the queue.

Buffer: Upon initialization, the buffer class creates four queue objects, one for each bin
colour. The role of the buffer class is to gather all of the signal data from each queue

using a round robin scheduling algorithm (repeatedly check from each one in order). The

buffer also maintains a count of the total number of items placed in each bin.

e Main: The main class is used to initialize the system and all of its classes. Upon
initialization, the main class creates a buffer and SD object. The main class is also
responsible for initiating the round robin check from the buffer class indefinitely. The
main class periodically removes the data from the buffer, and stores it in both the SD file
and the remote database.

e SD: The SD class is used to write all the signal data to CSV files on the SD card of the
Raspberry Pi.

1.3 Client Server Architecture

The client—server architecture is a distributed application structure that separates the
workload between the providers of service and service requesters. The providers of service are
called servers and the service requesters are referred to as clients. The client and server
communicate with each other over the internet. A representation of the separation between
clients and servers can be seen in Figure 3 below. Clients initiate communication sessions with
servers and the servers will serve the content of an application back to the client. The client
server architecture is particularly useful for web applications that do not have a need for high
scalability or large amounts of processing power. All of the web applications of our final product

utilize the client-server architecture to meet the needs of the requirement.

™,
%,
",

%,
b,
",

\-\.

Internet

D Clients L
|;| i Server

Figure 3. Diagram of Client-Server Architecture

1.4 Programming Language Decision

The software language that is used to implement the code to facilitate detection of the
sensors is Python. We have specifically chosen Python because it was found' to perform
reasonably well. In addition, there are many tutorials that can be found online that have
implemented similar projects to ours using the same sensor and microcontroller. Finally, a third

reason is that Python is known to be easy to learn and so there is a short learning period.

1

http://blog.dhananjaynene.com/2008/07/performance-comparison-c-java-python-ruby-jython-jru
by-groovy/

2 REQUIREMENT 1 DECISIONS

2.1 Introduction

Requirement 1 is to have an automated method of counting items placed in the bins. To
have items automatically detected when placed in a bin, there is a need for hardware
components. Our choice is to have a microcontroller attached to a sensor to keep track of when
items were placed in the bin. Therefore, for this requirement we considered several types of

microcontrollers and sensors to use.
2.2 Final Microcontroller Decision

We had compared both the Raspberry Pi and the Arduino. and found they both satisty all
of the project’s constraints. Therefore, our reasoning for choosing the Pi is that our group has
more experience working with a Raspberry Pi. The Pi is a popular product, meaning it is
well-tested, and replacements or maintenance documentation can be easily obtained if required.
We have also found that the Pi has more built-in features that would not require additional
installations, in contrast to the Arduino. For the Arduino to match all of the needed functionality,
namely a SD card reader, HDMI output and USB ports, the resulting size of the add-ons to the
Arduino will be larger than a stock Raspberry Pi. In addition, the Arduino with add-ons would

leave much more debugging in the hands of the client.
23 Final Sensor Decision

An ultrasonic sensor adheres to the constraints and requirements, but ultrasonic sensors
are more expensive than IR sensors. Laser sensors have a faster response time compared to IR
sensors. However, laser sensors are not optimal for our design because the laser sensor has a
smaller detection radius compared to an IR sensor. A small detection radius may not be able to
detect small objects such as gum wrappers. It would be possible to install multiple laser sensors
to broaden the detection radius, but the cost of purchasing multiple laser sensors conflicts with
constraint C9. The IR sensor adheres to all constraints and requirements, and is also a low budget

solution for this project. Therefore, after examining all of the options, we concluded that the best

sensor to use for this project was the IR sensor.

The final product made use of two passive infrared sensors (module HC-SR501) in each
bin at the recycling station. The use of two IR sensors proved to have a more stable average
detection rate of 70% with a 10% deviation. We had used a single IR sensor in each bin which

resulted in a 70% average detection rate with a 20% deviation.

2.4 Tested Alternate Solution 1

When we had found that the IR sensors yielded a 70% detection rate, we had attempted to
solve the problem using ultrasonic sensors (HC-SR04). After prototyping the ultrasonic sensor,

we had tested the detection rate to be an average of 30%.

The ultrasonic sensor is an active sensor, meaning that the sensor needed to be activated
in order for it to detect something. The activation time for the sensor was 10 milliseconds and
then the sensor would spend 10 milliseconds detecting objects within its detection range.
However, the sensors required a 10 millisecond wait time before re-activation. This wait time
was meant to allow for an analog input signal to settle. The result was that the sensor would
actually only detect objects once every 20 milliseconds, which proved to be problematic after

testing.

2.5 Tested Alternate Solution 2

We had also attempted to use the ultrasonic and IR sensors together in hopes that the
detection radius would increase. We connected the two types of sensors to the microcontroller
and conducted some tests by throwing various recyclable items in front of the sensors. The result
was that the detection rate was only as good as the IR sensor and there were only two cases (out
of 50) where the ultrasonic sensor detected an object when the IR sensor did not. However, there

were more cases when the IR sensor detected an item while the ultrasonic did not.

2.6 Proposed Alternative to Final Decision
Due to the imperfect detection rate of the IR sensors, we devised an alternative solution

9

that would offer a much higher detection rate. The solution involves the use of laser sensors.
Whenever an object collides with one of the lasers, a signal will be sent to the Raspberry Pi to
indicate that an object has been thrown into the bin. However, since laser sensors only have a
small detection radius, there is a possibility that small objects may not hit any of the lasers. To
minimize this possibility, multiple laser sensors can be attached to each bin, where each laser

covers a different area of the bin. The more laser sensors, the higher the detection accuracy.

As an example, we created a rough schematic, seen in Figure 4 below, of three laser
sensors connected to one bin. Since there are four bins, there will be a total of twelve laser
sensors. We will also require a separate 5V power source since the Raspberry Pi will not be able
to generate enough current to power a large amount of lasers. Thus, we included a 5V voltage

converter in the schematic.

Voltage Converter (5V) L
5v Lasers
(& r

4.7K Pull-up
Resistor »
Sensor 1 Sensor 2 Sensor 3

(N Raspberry Pi

il I‘
[l I

-, w— I |

Figure 4. Schematic of Laser Solution

10

3 REQUIREMENT 2 DECISIONS

3.1 Introduction

Requirement 2 is to have a database that the microcontroller can connect to and store data
that is related to the recycling station. The data stored for each item placed in the bin is the date,
time, location and bin colour. We decided to have two locations to store data; one location was
the SD card on the microcontroller and the second location was a remote database hosted on

Amazon web services.
3.2 Storage on SD card

The decision to store data on the SD card was made so that, in the case that the
microcontroller lost connection to an internet connection, data would not be lost over the
internet. A second consideration was that the SD card was free storage in comparison to a remote
database which would require maintenance and would need to be increased in size when the

database was full, which would cost the client money.

The data is stored on the SD card in a comma separated value (csv) file. The choice of a
csv file was that the data is easy to read, and the files would be easily compatible with a

spreadsheet, thus able to be consolidated into a graph for visualization.
3.3 Remote Database

We decided between two types of databases to install on our Amazon web server: Oracle
and MySQL. Although Oracle offered more features and functionality, it was designed for
commercial use and the extra features were not required for this project. Thus, we decided to
install a MySQL database on the server since it was more user-friendly, and our team had
previous experience using this tool. Furthermore, the MySQL framework allowed our team to
connect to the database using Python, which kept our code’s programming language consistent

with other components of the project.

11

4 REQUIREMENT 3 DECISIONS

4.1 Introduction

Requirement 3 is to have users of the recycling station be physically engaged with our
project when used. To engage the users with the bin, the client decided to have a monitor display
the number of items that were placed in each bin every day, as well as display the percentage of
items that were correctly placed in each bin from the previous day. A second component was to
have a web application game “that would teach users where fifteen of the most problematic items

belong.
4.2 Monitor Display

A web browser that would be displayed on a monitor attached to the Pi was a request by
the client. The major decisions for the design of the display were the colours, animations,
accuracy score and the bin counter. All of the colours were chosen to be pleasing to the eyes, not
be too confusing and to match the colours of the bins as closely as possible. The images at the
bottom of the screen were created to resemble each individual bin and the colours of the images
must not confuse the user. The accuracy scores had to be automatically updated according to
values that were input into our database by our clients. Finally, the display needed to show the
number of items placed in each bin. Videos* of the monitor display in action can be found in the

footnote.

2 hitps://www.youtube.com/watch?v=b5GJckuh9NM
3 https://www.youtube.com/watch?time_continue=1&v=UKnCsrDNccl
4 https://www.youtube.com/watch?v=9QDQ9PxBHro

12

4.3

Your Sort it Out Score!

Food Scraps @ Recyclable Paper Garbage
Containers

9 7 64 40

Napkins and paper UBC accepts all Only clean paper in| | Broken glass goes
towels go into the | |plastics (#1-7) in the the paper bin into garbage
food scraps bin recyclable
containers bin

—\ —

Yesterday's Accuracy: 0% Yesterday's Accuracy: 0% Yesterday's Accuracy: 0% Yesterday's Accuracy: 0%

Figure 5. Screenshot of Monitor Display

Web Application Game

We are using an open source HTMLS5 game framework called Phaser. Our decision to use

the Phaser framework is because we have past experience in using the framework. In addition,

Phaser has an extensive amount of documentation, as well as online examples. The game is a

remake of our client’s existing game, and thus no gameplay *decisions are made by us.

CIN[CON [GAIE]

e st C T T T T T T 1]
Q) et T T 1T T ITT T 1T T 1T T
S 'scoreboard!

Click 'Info" to find out more about
Sort It Out UBC

5 www.binfungame.com

Garbage

13

Figure 6 & 7. Screenshot of Homepage (left) and Gameplay (right) of Web Application Game

5 REQUIREMENT 4 DECISIONS

5.1 Introduction

There are two components to this requirement. The first component is to implement a
web based user interface ‘that allows the client to update the accuracy score on the web display
of the recycling station. The second component is to implement a web based user interface that
allows the client to download the CSV files directly from the database, so that they may view the
data on their local machine. Both of the web based interfaces are implemented using the
client-server architecture because there would be low traffic, and there is no need for scalability.

The technologies we use to implement the web applications are as follows:

e JavaScript

e HTML

e Bootstrap

e C(CSS

o JQuery

e Python (Webpy)

5.2 Client Interface to Access Database

The client user interface allows the clients to select data from the database based on the
specified inputs. The client enters a start date, end date, bin location, and bin color, which are
used to query data from the database. Figure 8 below shows a screenshot of the interface. The
start and end date is the time period in which the client wants the data of. A CSV file is then
created to store the data received from the database, and is also saved onto the Amazon web
server. When the client clicks “Download”, a download window pops up, allowing them to save
the newly created CSV file onto their own computer. The input fields are chosen to give the

client flexibility in their data search, but also keep the user interface very simple.

® http://ec2-54-218-32-132.us-west-2.compute.amazonaws.com:3082/
7 http://ec2-54-218-32-132.us-west-2.compute.amazonaws.com: 8083/

14

http://ec2-54-218-32-132.us-west-2.compute.amazonaws.com:8082/
http://ec2-54-218-32-132.us-west-2.compute.amazonaws.com:8082/

Bin Fun Game Data

Get Bin Data

Start Date (YYYY-MM-DD):

2016-02-10 n
¢ Save As &J
End Date (YYYY-MM-DD): - il T |
) |' Desktop » | 7” Search Desktop el
2016-03-20 File name: =
Save as type: [Microsof't Office Excel Comma Separated Values File ']
Bin Location (Nest):
nest = Browse Folders [Save] l Cancel]

Bin Color (black, blue, green, grey):

black

DUI.""nload

Figure 8. Screenshot of Client Interface to Access Database

5.3 Client Interface to Update Accuracy Score

The interface for the accuracy scores includes four text boxes and a calendar. The text
boxes allow the client to input the accuracy scores for each bin, while the calendar allows the
client to select which date the accuracy scores were calculated. When the client clicks “Submit”,
the accuracy scores and the selected date are uploaded into the database. The input fields are

chosen to maintain a simple user interface. Figure 9 below is a screenshot of the interface.

15

Accuracy Scores

Input Accuracy Data (%)

Food Scraps: « March 2016 »

Su Mo Tu We Th Fr Sa

1 2 3 4 b
Recyclable Containers:
€ 7 8 9 10 M 12
12 14 15 16 17 18 19
Paper: 20 21 22 23 24 25 26

27 28 29 30 31

Garbage:

Figure 9. Screenshot of Client Interface to Update Accuracy Score

5.4 Programming Language Decision

The backend framework of both user interfaces are implemented using Python and the
WebPy library. Python is specifically chosen to stay consistent with the use of Python for the

aforementioned requirements.

Bootstrap is chosen as a frontend framework because it allows for faster and easier web
development. Bootstrap is commonly used in industry to develop web applications. In addition,
HTML, CSS and JavaScript are used because these are standard web application development

technologies and because Bootstrap uses these technologies.
5.5 Implementation of Client-Server Architecture

The web server is hosted on Amazon web services. Amazon web services is a free and
easy to use web hosting service. We are using WebPy for the web server, instead of the default

Apache engine, to allow for a client to connect to the server, and to communicate with the

16

database that is also installed on the web server.

Figure 10 below depicts the workflow of a client-server web application. When a client
opens a browser on their computer and requests a web page from a server, the server responds to
the client by sending the data necessary to load the corresponding web page. The web page is
displayed in a client browser by utilizing JavaScript, HTML and Bootstrap. The client can then

use the interface from their web browser.

When a client submits a request via the user interface, the client’s browser sends a
request to the server using JQuery. The database processes the request on the web server using
the WebPy framework. The server has access to the database and all of its content. When the

server completes processing the request, the server sends a JQuery response back to the client.

Client Interacts with

& websie Wbsite designed using
1 —T Javascript. HTML,
: Booistrap, and C55
Website .
Client Computer
Request sensor data T YTy, Send sensor data in
using JOuery) csv file using JQuery
l; Internet
- x.\'_____,..
A
"‘—'R___ —""w-\.____-"ﬁ_ —
—= Server Code =— Sener ising Webpy
— bechnalogy to sere and

handla requests

Request sensor data Send sensor data

Database

Amazon Web Server

Figure 10. In-depth Diagram of Client-Server Architecture

17

6 REQUIREMENT S DECISIONS

6.1 Introduction

The client’s request is that the entire project be easily maintainable even after the period
of which the capstone group has completed the project. The hardware components must be
robust and be able to sustain reasonable force. The software architecture is designed to allow for
change in any module such as sensors. In addition, adequate documentation is provided to the
client so that they understand how to use the system, as well as allow for another developer to

change the system.
6.2 Hardware Components

All hardware components are specially selected to be very inexpensive and easily
purchased online from common suppliers such as ModMyPi, Amazon and Ebay. In the case that
any hardware component fails, the client would be able to search components online and buy

them from anywhere in the world.
6.3 PiCase

We are using a 3D printed case for the microcontroller. The case is specially designed to
cover all of the inputs of the Raspberry Pi that are not being used for the initial phase of the
BinFunGame project. AutoDesk is used to create the images seen below. Figure 11 on the left
shows the part of the case that holds the Pi and is able to be screwed onto the bin station. Figure
12 on the right is the cover of the case that is also designed to be screwed to keep both pieces of

the case together.

18

6.4

Figure 11 & 12. 3D model of Raspberry Pi Case

Documentation

The development team has left copious amounts of documentation for the client to

resume the project in the future. The documentation files/practices are as follows:

Industry standard code comments are written above all software methods explaining what
each method does.

High-level software diagram to outline the software architecture. The diagram can be
referred to in section 1.2 of this document.

Step-by-Step instructions explaining how to use each of the features that we developed
for the client and require manual labour.

A requirements document outlining the requirements, constraints and goals that we met
and those of which we did not satisfy.

A design document that outlines all of our design decisions and provides alternative
solutions to designs that failed the requirements.

A validation document that outlines the results of each of the implemented features as

well as the test cases.

19

7 CONCLUSION

71 System Overview

The final product that was completed during the initial phase of the BinFunGame project
is fully depicted in the Figure 13 below. There are passive infrared sensors that are connected to
a Raspberry Pi which stores signal data on its SD card. The Pi also uses Wifi to send data to a
database server that is hosted on Amazon web services. The server is implemented using the
client-server architecture to update its own display which the Pi is able to display from a web
browser and a computer monitor. The web game and client user interfaces are also hosted from

Amazon web services and use the client-server architecture.

Web brqwser requesting . :
oA DAL £ O Workflow of bin fun game station

Display
(Web Browser) ‘ -
i Internet \ Workflow of web game

—~ A A FreATe -
Green Arrows:
Scoreboard data

~ Code For Web

Server Game

]
: Web browser requesting
Cade for Client Ul
= Client UI Page

Server -

Workflow of client ui page

Figure 13. System Overview

7.2 Conclusion

All of the client’s requirements are satisfied by the product made during the initial phase
of the BinFunGame project. Most of the implementation is working and meets expectations,
however the sensors are operating at optimal performance. Although the initial phase of the

project is complete, the development team suggests that the project be refined in the future.

20

P1.40 - BIN FUN GAME

Validation Document

REQUIREMENT 1
1.1 Conclusion
1.2 Test Cases
REQUIREMENT 2
2.1 Conclusion
2.2 Test Cases
REQUIREMENT 3
3.1 Conclusion
3.2 Test Cases
REQUIREMENT 4
4.1 Conclusion
4.2 Test Cases
REQUIREMENT 5
5.1 Conclusion

TABLE OF CONTENTS

1.1 Conclusion

1 REQUIREMENT 1

The infrared (IR) sensors detect when an item has passed in its range of sight. We used

two IR sensors in each bin to count the number of items that pass through. The setup of the

double IRs had been manually tested, and the tested rate of detection was~70%.

The sensor was initially tested by having the program log print statements in a command

prompt whenever movement was detected from the sensor. After implementation of the monitor

display (refer to requirement 3), tests were conducted by confirming that the total number of

items were correctly incremented on the monitor whenever a signal was detected.

1.2 Test Cases

Sensor Test Cases

Test cases

Steps

Desired Result

Green Sensor

Insert an object into the green
bin.

The display count for Green
should increase by one.
Animation should play,
which should display a tip
about recycling and a small
gif.

Blue Sensor

Insert an object into the Blue
bin.

The display count for Blue
should increase by one.
Animation should play,
which should display a tip
about recycling and a small
gif.

Grey Sensor

Insert an object into the Grey
bin.

The display count for Grey
should increase by one.
Animation should play,
which should display a tip
about recycling and a small
gif.

Black Sensor

Insert an object into the black
bin.

The display count for Black
should increase by one.

Animation should play,
which should display a tip
about recycling and a small
gif.

2 REQUIREMENT 2

2.1 Conclusion

A MySQL database is set-up to store signal data, which sends data from the Raspberry Pi
to the database over the internet. The database was tested through semi-manual test cases which
were contained in a python script. By running the script, we created tables, inserted entries, and
pulled data back from the database for verification. Each entry that was sent to the database
included: the time and date at which an item is placed into the bin, and the color and location of
that bin. We also tested inserting and retrieving data that contained the count values for each bin.
The correctness of the database was evaluated by manually reading the contents of the database
after insertion. Our test cases proved that the implementation was correct by sending and storing

data in the expected formats.

2.2 Test Case

The desired results were verified by using a tool called MySQL Workbench which
allowed us to view all entries in the database. We first ran our test cases to make changes to the
database, and then we used the tool to ensure that the changes to the database were correctly
made. We also used print statements, which printed information to the screen, for certain test

cases to verify correctness.

Database Test Cases

Test cases Steps Desired Result
Insert Sensor Data Inserts an entry of sensor data | The database should contain
into the database. the entry

The entry contains a bin
color, a bin location, the time,
and the date.

Insert Multiple Entries of
Sensor Data

Inserts two entries of sensor
data simultaneously into the
database.

The database should contain
both of the entries that were
inserted into the database.

Create a Count Table and
Insert Count Values

Creates a table designed to
hold the count values for each
bin, and then inserts several
entries into the table.

The database should contain
contain a new table that is
populated by all the entries
that were inserted into it.

Update and Pull a Database
Entry

Update a database entry, then
retrieve the same database
entry.

The database entry that was
retrieved should have a
different value to what it
previously was.

3 REQUIREMENT 3

3.1 Conclusion

Both of the components that were implemented for requirement 3 have been manually
tested. The monitor display has been manually tested by the development team by throwing
items into each bin and verifying that each count on the display incremented. In addition, campus
users have “interacted” with the station by throwing items into the bins, and looking at the
monitor for feedback. The web game was manually tested by the development team and by end

users. The end users were not able to find any problems with the web game'.

3.2 Test Cases

The test cases used for the monitor display can be found in section 1 of this document.

Below are the test cases used to test the web application game.

Web Game Test Cases

Test cases Steps Desired Result

Loading State Go to the URL Before Menu State, see
www.binfungame.com. Loading State which displays
an image of ‘Emily’ and a
loading bar.

Menu State: Initial After Loading State, game In Menu State, should see the
should enter Menu State. Title, ‘Emily’,Instructions,
background, and 3 buttons:
Info, Start, Scoreboard

Menu State: Info In Menu State, click on Info | Clicking on Info button
button should open up a new link
that should display more
information about
Sort-1t-Out.

https://sustain.ubc.ca/campus-
initiatives/recycling-waste/sor

' https://www.youtube.com/watch?v=5YZQ-Cj28Cw

http://www.binfungame.com/

t-it-out

Menu State: Start

In Menu State, click on Start
button

Clicking Start button should
bring you to Main Game
State.

Menu State: Scoreboard

In Menu State, click on
Scoreboard button

Clicking Scoreboard button
should bring you to
Scoreboard State.

Main Game State: Initial

After Loading Main Game
state by clicking Start Button

Should display background, 4
bins, and brief instructions

Main Game State: Main
gameplay

Click anywhere on screen,
click and hold on item, then
drag to a correct bin.

After initial click, should
show countdown of 3 seconds
before starting. After an item
should show up with a timer
increasing in time along with
a score beside the timer. After
dragging item into correct
bin, an animation should play
and a new item should
appear. The score should
increment by one.

Main Game State: Main
gameplay 1

Click anywhere on screen,
click and hold on item, then
drag to an incorrect bin.

After initial click, should
show countdown of 3 seconds
before starting. After an item
should show up with a timer
increasing in time along with
a score beside the timer. After
dragging item into incorrect
bin, an animation should play
and the same item should
return to the starting location.
The score should not
increment.

Main Game State: Main
gameplay finish

Repeat steps in Main Game
State: Main gameplay 1.

Reach max score (15).

Should display Game Over
screen. [tems should stop
spawning. Timer should stop.

Scoreboard State: Before
game

Enter Scoreboard State after
clicking scoreboard button,

The Scoreboard State should
display the top 10 scores with
the user’s submitted name.

There also should be a submit
and start button. The personal
score displayed should be
9999.99.

Scoreboard State: After game

Enter Scoreboard State after
clicking scoreboard button,

The Scoreboard State should
display the top 10 scores with
the user’s submitted name.
There also should be a submit
and start button. The personal
score displayed should be the
time gotten after the finishing
one game.

Scoreboard State: Submit

In Scoreboard State, click the
Submit button. Enter a name
and click OK.

After clicking the Submit
button, a window should pop
up and ask you to enter your
name. After entering name
and click OK. The top 10
Scoreboard List should
update with the updated
highscores.

4.1 Conclusion

4 REQUIREMENT 4

The accuracy and database access user interface (UI) were manually tested. The accuracy

data has been entered in the accuracy UI, and updated on the monitor as “yesterday’s accuracy”

for each bin. The database access Ul was also manually tested by selecting a range of dates and

bin colour to download data. The created CSV file, containing the data pulled from the database,

was opened and found to be in the correct format.

4.2 Test Cases

Accuracy Ul Test Cases

Test cases

Steps

Desired Result

Insert Accuracy Data

User picks a day, and enters a
percentage for the accuracy
data on the UI. The
submission is inserted into
the database.

The entry contains the date
and accuracy percentage.

The database should contain
the entry

Update Accuracy on the Pulls accuracy data of The database should contain
Monitor previous day, and updates the entry, and the percentage
“Yesterday’s Accuracy” on should be shown on the
the monitor. monitor.
Client UI Test Cases
Test cases Steps Desired Result

Pull Requested Data from the
Database

User enters a start date, end
date, bin location, and bin
color into the corresponding
entry forms. Then, user
presses “Submit”. The
entered data is used, in a
query, to pull data from the

The pulled data should be
entries starting from the start
date, until the end date. It
should be from the specified
location and bin color. Each
entry should contain a date,
time, bin location, and bin

database. color.

Create CSV File Uses the pulled data from the | A new CSV file that should
previous test case. First, a contain all the entries from
new CSV file is created, and | the start to end date, and from
named with the data the user | the specified location and bin
has entered. Then all the data | color.
1s entered into a CSV file.

Send File to User User presses “Download”, The CSV file downloaded

and a download window pops
up, allowing them to save the
new CSV file onto their
computer.

should be the newly created
CSV file from the previous
step.

10

5 REQUIREMENT 5

5.1 Conclusion

The project is maintainable. The code was designed to be modular, so any module can
easily be added, removed, or modified. All hardware components are inexpensive, and easy to
obtain and replace. There was no custom hardware used in the project. The documentation of the
test cases, software methods, and prototyped solutions are clear, and easy to understand. There
are also step-by-step instructions on how to start the system, how to use Amazon web services,
how to use both of the user interfaces and how to connect to the remote database. The
instructions are clear enough so that another technological individual can resume the project with

casc.

11

