University of British Columbia

Social Ecological Economic Development Studies (SEEDS) Sustainability Program

Student Research Report

UBC AMS Microbrewery

Food and Beverage Innovation Center (FBIC) – Opportunities for Waste and Emissions Reductions

Prepared by: Ali Wasti, Hassan Sinno, Haluk Kaan kartal, Sarmad Ali, Tamer Baroud, Vito Abednego, Michael Kosegi

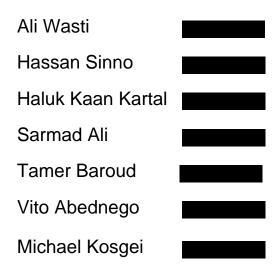
Prepared for: UBC AMS

Course Code: CHBE 454

University of British Columbia

Date: 6 June 2022

Disclaimer: "UBC SEEDS Sustainability Program provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student research project and is not an official document of UBC. Furthermore, readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Sustainability Program representative about the current status of the subject matter of a report".


UBC sustainability

UBC AMS MICROBREWERY

UNIVERSITY OF BRITISH COLUMBIA CHBE 454

Date Submitted: April 15, 2022

Group P10

EXECUTIVE SUMMARY

UBC

Brewing is a very energy and water-intensive process. The team has been tasked to design a microbrewery on the UBC campus with the collaboration of the UBC AMS. This report focuses on the design of a sustainable microbrewery that uses efficient methods for waste management.

The reactants needed for the brewery process are yeast, hops, malt/barley grains, and water. The microbrewery is divided into two sides: the hot and cold sides. The hot side contains the mash/lauter tun and hops boiler. The mash/lauter tun is used to mash grains to convert starch to sugar and then separate wort from the undissolved spent grains. The hops boiler is used to extract flavor from hops. The cold side encompasses the fermentation tank and the bright tank.

The market analysis conducted on the brewing business shows that their consumption can be almost cut in half by recycling the water and energy streams. In addition, two control loops will be implemented for this process, with simple control strategies being used due to the process being a small-scale batch process. Both of these will be temperature control loops applied on the fermentation tank (R-100) for optimum yeast metabolism and the bright tank (V-103) to keep the beer at a cool temperature before packaging. Pressure relief valves are also installed on the tanks to release any build-up pressure occurring; no further equipment protection measures are required as this is a small-scale production that will not have hazardous levels of carbon dioxide or achieve high pressures. The final design's environmental and economic analyses have been conducted, and analysis has been described in the report below. It was found that for an initial investment of \$1.3M, gross revenue of approximately \$350k can be expected.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	II
TABLE OF CONTENTS	III
LIST OF FIGURES	I <u>V</u>
LIST OF TABLES	v
NOMENCLATURE	v
INTRODUCTION	1
MARKET AND COMPETITIVE ANALYSIS	1
BLOCK FLOW DIAGRAM	3
PROCESS SYNTHESIS	4
EQUIPMENT DESCRIPTION AND DESIGN	5
ASSEMBLY OF DATABASE	8
PROCESS FLOW DIAGRAM (PFD)	10
STREAM TABLES	11
PROCESS DESCRIPTION	12
ENERGY BALANCE	13
EQUIPMENT LIST	15
EQUIPMENT LIST	
	16
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID)	16
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID) P&ID CONTROL LOOP NARRATIVE	16 17
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID) P&ID CONTROL LOOP NARRATIVE CONTROL SYSTEMS	
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID)	
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID) P&ID CONTROL LOOP NARRATIVE CONTROL SYSTEMS PLANT LAYOUT HAZARD AND OPERABILITY ANALYSIS (HAZOP)	
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID) P&ID CONTROL LOOP NARRATIVE CONTROL SYSTEMS PLANT LAYOUT HAZARD AND OPERABILITY ANALYSIS (HAZOP) STARTUP AND SHUTDOWN PROCEDURE	
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID) P&ID CONTROL LOOP NARRATIVE CONTROL SYSTEMS PLANT LAYOUT HAZARD AND OPERABILITY ANALYSIS (HAZOP) STARTUP AND SHUTDOWN PROCEDURE PLANT STARTUP	
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID) P&ID CONTROL LOOP NARRATIVE CONTROL SYSTEMS PLANT LAYOUT HAZARD AND OPERABILITY ANALYSIS (HAZOP) STARTUP AND SHUTDOWN PROCEDURE PLANT STARTUP PLANT SHUTDOWN	
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID) P&ID CONTROL LOOP NARRATIVE	
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID) P&ID CONTROL LOOP NARRATIVE CONTROL SYSTEMS PLANT LAYOUT HAZARD AND OPERABILITY ANALYSIS (HAZOP) STARTUP AND SHUTDOWN PROCEDURE PLANT STARTUP PLANT STARTUP PLANT SHUTDOWN CIP PROCEDURE ECONOMIC ANALYSIS	
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID)	
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID)	
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID)	

UBC

ENVIRONMENTAL ANALYSIS	31
GAS EMISSIONS	
SOLID WASTE	
LIQUID WASTE	
RECOMMENDATIONS	35
IMPLEMENTED RECOMMENDATIONS FROM TERM 1	35
FUTURE IMPLEMENTATIONS	35
CONCLUSION	
ACKNOWLEDGMENTS	
REFERENCES	
APPENDIX A: PFD & P&ID	43
PROCESS FLOW DIAGRAM (PFD)	44
STREAM TABLES	45
PROCESS AND INSTRUMENTATION DIAGRAM (P&ID)	46
APPENDIX B: SAMPLE CALCULATIONS	47
APPENDIX C: EQUIPMENT LIST AND SPECIFICATION SHEET	55
APPENDIX D: HAZOP	65
APPENDIX E: PLANT LAYOUT	70
APPENDIX F: ECONOMIC ANALYSIS	73

LIST OF FIGURES

FIGURE 1: BLOCK FLOW DIAGRAM	3
FIGURE 2: PROCESS FLOW DIAGRAM	
FIGURE 3: P&ID	
FIGURE 4: PLANT LAYOUT	20
FIGURE 5: CASH FLOW DIAGRAM	
FIGURE 6: RECOMMENDED BREWING SCHEDULE	35

LIST OF TABLES

TABLE 1: STREAM TABLE AND MASS BALANCE	11
TABLE 2: ENERGY REQUIREMENT FOR PIECES OF EQUIPMENT	14
Table 3: Equipment List	15
TABLE 4: CONTROL LOGIC NARRATIVES	19
TABLE 5: EQUIPMENT COST BREAKDOWN	27
TABLE 6: TOTAL CAPITAL EXPENDITURE - CAPEX	28
TABLE 7: ANNUAL OPERATING COST - OPEX	29
TABLE 8: LIQUID WASTE STREAMS	
TABLE 1: STREAM TABLE AND MASS BALANCE	45

NOMENCLATURE

BFD - Block Flow Diagram

PFD - Process Flow Diagram

P&ID - Process and Instrumentation Diagram

carbon dioxide - Carbon Dioxide

- HX Heat Exchanger
- USD US Dollar
- CAD Canadian Dollar
- kW kiloWatts
- kJ kiloJoules
- Kg kilograms
- Cp Heat Capacity
- L Latent Heat
- M Mass

Q - Energy

- HL HectoLitres
- Bbl beer barrels
- TT Temperature Transmitter
- TC Temperature Controller
- PT Pressure Transmitter
- LT Level Transmitter
- pHT pH Transmitter

INTRODUCTION

The food and beverage industry is an ever-growing industry with a current global market of \$184.5 billion in 2020 and is expected to reach \$274.5 billion by 2025 [1]. Beer is the fifth most consumed beverage globally, with about 1.91 billion hectolitres of beer produced in 2019 [2]. Beer is a water and energy-intensive process that needs around 10L of water to produce 1L of beer. The substantial amount of beer produced annually gives rise to research focused on utilizing waste streams and making the process more energy efficient. Group P10 has been handed a project specified by the UBC AMS to tackle this issue. The project consists of building a sustainable microbrewery that could fit into 800 ft2, with the expected output of the beer product being 1000 liters per batch. The brewery process is relatively linear, as only two streams are going into the reactor, the yeast stream, and the cooled wort stream; it was therefore concluded that the batch reactor is the ideal reactor since it has a significantly faster residence time than other reactors. On average, four batches per month are planned throughout the year. The feed consists of malted barley, hops, yeast, and water. Aside from the beer, the output would be spent yeast, hops, malt, wastewater, and carbon dioxide, which are optimized for sustainability and efficiency. The size of the brewery located on the University of British Columbia campus inside the AMS Nest limits the potential units that can be accommodated for the process.

MARKET AND COMPETITIVE ANALYSIS

The process of making beer production a more efficient process is limited by the project's financial aspect, not the lack of available technologies. The sustainability options are also limited by the lack of available space and scale of production in microbreweries. In general, smaller breweries

use more energy per 100 liters as the base energy requirement does not change, even for smaller volumes. The total energy per gallon of beer is around 50 to 66 kW/bbl [3]. The total energy is divided into electrical and thermal energy, with electrical energy accounting for around 70% of the total energy needed. At 6 cents per kW of energy, the cost for a barrel of beer is 3.30 to 4.26 USD. Revenue in the Beer segment amounts to USD 552,404M in 2021. The market is expected to grow annually by 9.13% (CAGR 2021-2025) [4].

As a brewery consumes a lot of water and energy, the goal of the study in place is to reduce the amount of water and disposed waste to produce a high-quality beer. A lower efficiency brewery can take up to 10 L of water to produce 1 L of beer, while the wastewater leaving the system can be around 8 L. Allowing for a more efficient process, a brewer can potentially consume around 5 L of water instead [4.1]. Inefficiencies arise from disposing of heat exchanger water, using an excess amount of water during the lautering process, overheating within the hops boiler, and minor equipment leaks. These inefficiencies can be prevented by regular equipment maintenance, water recycling systems, batch control systems and batch planning. In addition, a more diligent brewing practice will prevent the need to dispose of batches due to wrong composition and concentrations. Temperature and level control systems can reduce energy usage and prevent bad batches.

BLOCK FLOW DIAGRAM

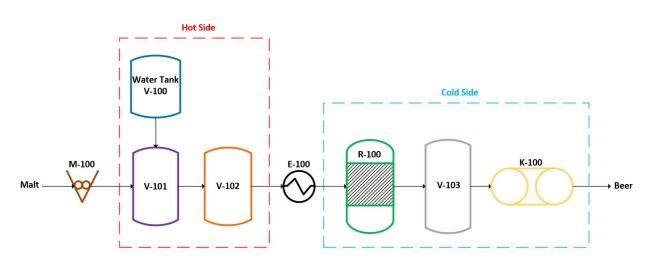


Figure 1: Block Flow Diagram

The brewery process has two main sides, the hot and cold sides. The process starts hot and transitions to the cold side through the cooling section before the cooling block. The water is first stored in a jacketed storage tank where it can be boiled before brewing to sterilize the water.

Parallel to this, the grains are milled at the milling station and then transported into the mash/lauter tun for mashing, where the grains are mixed with clean water to create a mixture called wort. Next, the wort goes through a process of lautering where the suspended solids of grains are separated, and the wort has been adjusted to acceptable turbidity. Next, hops are added to the wort, and the new mixture is heated up to extract flavors from the hops. Next, the hops are separated via whirlpooling equipment inside the hops boiler, using centrifugal force for separation. Afterwards, the wort mixture is cooled off using the heat exchanger, and the brewery process transitions from the hot side to the cold side.

The cooled wort is sent into the reactor, the fermentation tank, where yeast is then added to start the fermentation process. Fermentation can take anywhere from two to eight weeks, depending on the type of beer produced. This mixture can now be called beer. The beer is then sent to the bright tank for conditioning while the yeast settles at the fermenter's conical bottom. Additional flavoring and fining products can be added to the bright tank, and the beer is left to age for a couple of days. Carbon dioxide is also added to the bright tank for carbonation. The beer can now be processed for further packaging.

PROCESS SYNTHESIS

The design of the process started with industrial-scale research since most microbreweries do not have documented block flow diagrams or process flow diagrams. After initial research, a block flow diagram was created with the stages needed for the brewery process. Next, a process flow diagram was created with the basis of a block flow diagram. Since these designs have been based on specifications for an industrial-scale process, iterations were required for the microbrewery design. The first of these iterations are the vessels. The industry uses vessels [5] to store the initial reactants and intermediary products. These vessels also allow storage of waste streams where they can be potentially filtered for reuse. However, space constraints do not allow the space needed for these pieces of equipment in the design.

The process flow diagram has been designed with these constraints in mind. The chosen pieces of equipment for these diagrams were the milling station, mash tun, lauter tun, hops boiler, whirlpool, wort clarifier, fermentation tank (reactor), bright tank, centrifuge, and the keg filling station. A visit to the Slow Hand Microbrewery changed the group's initial design to be more compact as this allows more efficient use of space. The latest version of the process flow diagram combines the

mash tun and lauter tun; hops boiler and whirlpool, respectively. Centrifuge after the bright tank is removed as the wort clarifying is done during the whirlpooling stage. According to brewery industry reviews and the co-owner of Slow Hand Microbrewery, the main difference between the separate equipment and the combined equipment is its ability to run several batches at the same time [6]. Furthermore, options such as multiple heat exchangers and various filters were explored but were not included in the final design.

Throughout term one, certain choices were made that affected the team's overall process flow diagram. Many of these choices, such as reactants, product type, and such, were kept constant as there was no need to change any of them. The batch size was determined through the fermentation tank chosen by the AMS representative, considering space constraints.

EQUIPMENT DESCRIPTION AND DESIGN

<u>M-100, The Milling</u>

This equipment is used for milling, as the name indicates. The grains used for the brewing process are milled into fine particles to prepare for the rest of the stages with this equipment. The capacity of the milling station is 150 kg/hr to 300 kg/hr.

V-100, Water Storage Tank

The city water is used for the brewing process; however, it is quite challenging to pump directly to the different stages, so for time and work efficiency, the water required for the process is stored in a jacketed vessel for sanitizing purposes. The maximum and minimum design temperatures for this vertical tank are 100°C and -10°C, respectively, with the tank operating between 0.9 and 1.3 atm. These design parameters are determined using the material of construction. The vessel height

and diameters are 1.1m and 1.83 m³. These specifications are chosen based on supplier values that meet the capacity requirements.

V-101, Mash/lauter tun

This equipment is a combination of mash and lauter tun. Some breweries have them as two separate components, while other microbreweries have them combined as a single tank due to spacing restrictions. The process happens consecutively inside this equipment. First mashing happens when the water enters at 25°C and is mixed with the milled grains to create a mixture called wort. After this mixture is made, lautering starts where the spent grains are allowed to settle at the "false bottom," and this forms a grain bed. The wort is filtered through this cake and then recirculated back from the top to be filtered again during the recirculation process. Next, more water is added to decrease the turbidity. This recirculation process is also known as "Vorlauf ." The mash/lauter tun tank operates at a pressure of 1 bar and can fit 1548 kg/batch while having a residence time of 60 mins. Once the desired turbidity and viscosity of the wort are achieved, it moves onto the next stage. The grain bed is collected from the false bottom. The grain bed consisting of spent grains is a waste stream.

V-102, Hops Boiler, and Whirlpooling

This equipment is also a combination of two processes which are hops boiling and whirlpooling. At this stage, the hops are added for flavoring purposes, and the mixture is heated up to extract the maximum amount of flavor. After this boiling process, the mixture enters the whirlpooling stage. The centrifugal forces are used to create a whirlpool so that the solid particles such as hops are accumulated at the bottom. The wort mixture, which is free of solids, is pumped into the next stage. This equipment is jacketed for heating purposes. The 4.1 m³ vertical vessel is made of 304 food-

grade stainless steel with a 1.42 m diameter. The Whirlpool operates between -190°C and 800°C with an operating pressure ranging between 0 and 4 atm.

E-100, Heat Exchanger

At this point, the hot side of the process needs to transition into the cold side, and thus a heat exchanger is used to cool off the wort to 20°C. The cooled-off wort goes into the fermentation tank. The heat exchanger in use is made of Carbon steel 316L and can operate at up to a temperature of 150°C and a pressure of 10 atm. Based on the operating parameters for the process, the choice of the material and capacity fit the given parameters.

<u>*R-100*</u> (A & B), The Fermentation Tanks

Yeast is added to the fermentation tank. Next, the yeast will start to consume the sugar to produce the alcohol. This process is exothermic and can take two to eight weeks to complete. The bottom of this reactor is conical so that the yeast will accumulate at the cone for ease of disposal. The reactor has a rake inside to separate the settled yeast during the transfer of beer into the bright tank. The reactor temperature needs to be kept relatively constant, and because of that, this reactor is jacketed, and glycol is used to cool off the excess heat produced from the reaction. The reactor operates between 0°C and 40°C with a pressure ranging between 0atm and 3atm. The 1200 L reactor has a 60° conical angle and is 2.438 m heigh with an outside diameter of 1.1m. The reactor volume was chosen by the team's sponsor; after checking multiple vendors for their sizing, the previously mentioned parameters were chosen based on the 1200 L reactors they had to offer.

V-103, The Bright Tank

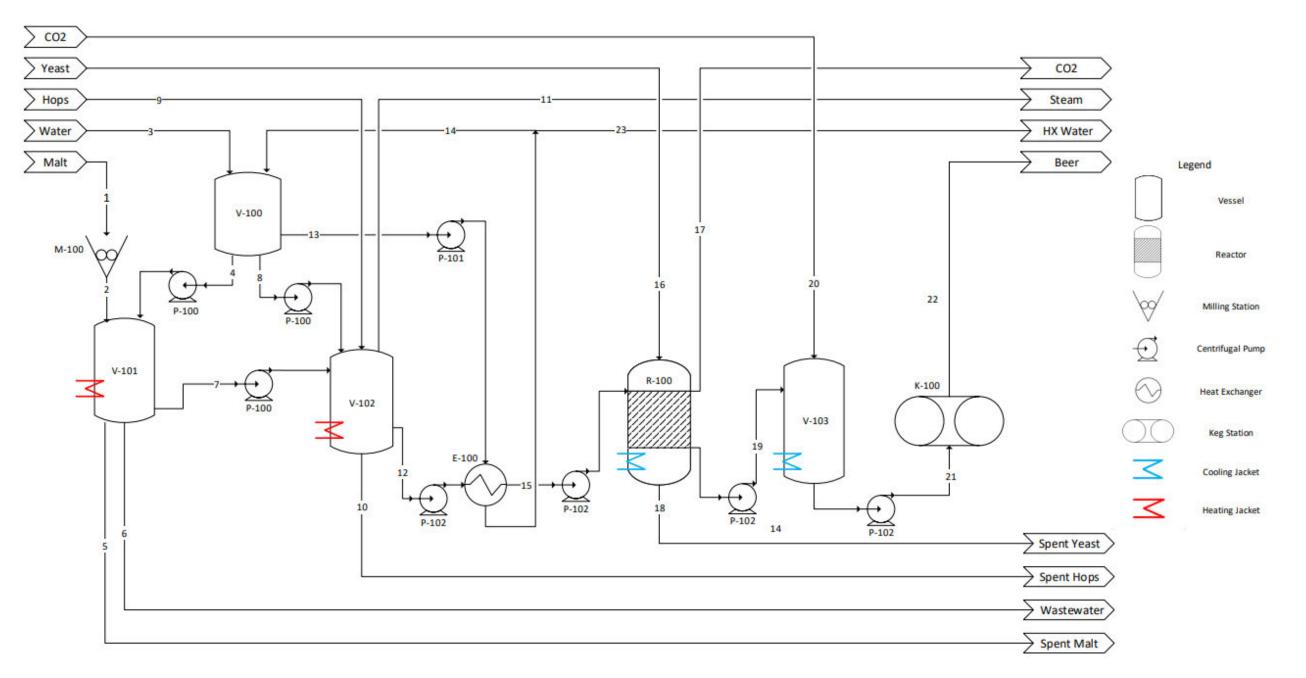
The beer is pumped to this vessel for conditioning. If wanted, more flavoring can be added at this stage. The beer rests in this tank for a couple of days. Then, the carbon dioxide is added from the

bottom of this vessel for the carbonation of the beer. The bright tank can operate at temperatures between -190°C and 800°C, with the operating pressure ranging between 0 and 4 atm. This 1.7 m³ vessel is also jacketed, and the beer inside is cooled off with glycol through the jacket for aging purposes. The design condition temperatures are determined using the material of construction.

K-100, Keg Filling Station

The cooled beer can be sent to the keg filling station, where the beer is pumped into the kegs. The beer is now ready.

P-100,101,102, Centrifugal Pumps

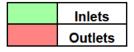

Centrifugal pumps are used in the process of brewing. Some of the pumps are re-attached through different equipment for pumping between stages. One pump can be used between the processes of the hot side, and another one can be used for the cold side. The last pump is exclusive to the heat exchanger. The pump operates between 60°C and 75°C with an operating pressure ranging from 99 to 103 kPa.

ASSEMBLY OF DATABASE

For this project, several property data were collected for the microbrewery design and the initial data set was used for the mass balance of a brewery. Since beer making is a biological process, the kinetic values are harder to find, and the ones that can be found are experimental with caveats. Therefore, an industrial-scale brewery design is used to scale down for a microbrewery [5]. The mass balance, energy balance, pieces of equipment, and incoming and outgoing streams were modified according to the scale and design of this project. The production of the microbrewery is determined to be 1000 liters due to the reactor size given by the AMS (1200 liters). For energy balance, values such as latent heat and heat capacity are used for the calculations, and the values

for those data points are extracted from the NIST Workbook. In addition, some specific values, such as for hops and malt, have been determined through brewing literature [7].

Notes	s	Revision	Description	Date	Worked By	Approved By	UBC	UBC Enginee	ring Ltd.
		А	Preliminary PFD	11/5/2021	SA	AW	This drawing is the property of	Capstone Project -	FBIC Brewery
		В	Simplified Proces	11/25/2021	SA	AW	UBC and its content is confidential and shall not be	Microbrewery	Group P10
		С	Term 2 Updates	4/10/2022	SA	AW		Process Flowsheet	Group P10


Figure 2: Process Flow Diagram

STREAM TABLES

Table 1: Stream Table and Mass Balance

Stream Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
			Wate																				
From	Malt	M-100	r	V-100	V-101	V-101	V-101	V-100	Hops	V-102	V-102	V-102	V-100	E-100	E-100	Yeast	R-100	R-100	R-100	CO2	V-103	K-100	E-100
	M-				Spent	Waste				Spent								Spent					HX
То	100	V-101	V-100	V-101	Malt	water	V-102	V-102	V-102	Hops	Steam	E-100	E-100	V-100	R-100	R-100	CO2	Yeast	V-103	V-103	K-100	Beer	Water
Temperature(C)	25	25	25	25	70	70	70	25	25	95	100	95	20	57.5	20	20	20	20	20	10	10	10	20
Pressure(atm)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Mass flow rate																							
(kg/batch)	285	285	4,394	1,650	228	1,353	1,901	57	4	740	172	1,051	2,102	963	1,051	10	48	10	1,018	2.2	1,007	1,007	1,139
Component mass	flowrat	e (kg/batc	h):						-														
Malt	285	285	0	0	45	0	239	0	0	48	0	191	0	0	191	0	0	0	95	0	95	95	0
Hops	0	0	0	0	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0
Yeast	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	10	13	0	0	0	0
Water	0	0	4,394	1,650	183	1,353	1,663	57	0	688	172	860	2,102	963	860	0	0	0	860	0	860	860	1,139
CO2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	48	0	2.3	2.2	5	5	0
Alcohol	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	48	0	48	48	0

PROCESS DESCRIPTION

The process starts with malted barley passing through the milling machine to grind the grains, and water is then added through a pump from the water vessel (V-100) to the mash/lauter tun (V-101). In this step, the mash/lauter tun is used to create the wort mixture with milled grains and water. During this, the mixture, called wort, is also heated for solubility and sterilizing purposes. Spent grains are separated from the process, and it is also used to clarify the wort early on. The process works by having the grains settle at a false bottom to create a grain bed, which acts as a filter for the liquid mixture to go through. The mixture is then recycled back to the mash and lauter tun, and it is filtered through the grain bed again until the mixture is clear enough. The water is recycled through the heat exchanger and sent back to the water vessel for future use. Next, hops are added to the wort in a boiler (V-102), which gives a bitter taste to the beer by extracting the oils out of the hops to balance out the sweet wort and give the beverage a bitter flavor. The mixture is boiled for around an hour before being sent to the next stage. The wort/hop mixture is then sent at a high velocity to the whirlpool to cause the liquid to start spinning and push the solids down at the center. Whirlpooling is used to separate spent hops from wort. As the liquid hits the sides and the bottom of the container, the friction causes it to slow down, creating a pressure gradient that collects the solids in the center.

After the wort is separated from the hops by a whirlpool, the wort goes through a liquid-to-liquid heat exchanger (E-100) in which the wort is cooled from 90°C to around 20°C. Next, the cooled-down wort is pumped via centrifugal pump to the chosen fermentation tank (R-100). The cold temperature aids with the settling of any suspended solids via sedimentation left to get a clearer wort. The yeast is also added at this stage, where the fermentation reaction will happen. In the fermentor, the wort and yeast are left there for four to six weeks; during that time, the yeast will

consume the glucose/sugar available in the wort to produce carbon dioxide and alcohol. Since fermentation is an exothermic reaction, the fermenter is jacket cooled to keep the temperature around 20-25°C as temperatures higher than those can form other byproducts which are undesired. The fermentor has a conical-shaped bottom to trap the yeast, which can be used for the next batch. The beer exiting the fermenter is then sent to a bright tank (V-103) and is left there for about 48 hours. The bright tank is cooled via a cooling jacket to cool the beer to around 20°C. The cooling is necessary as it reduces foaming while filling the beer. The beer is then carbonated further until the desired amount of carbonation is obtained. Further clarification can happen at this stage if necessary. At this point, the final product of beer is ready and just needs to be packaged. The chosen technique to fill the beer is via a counter-pressure keg filling system (K-100). This process works by filling the keg with carbon dioxide to push all the oxygen out to prevent the beer from oxidizing; as the carbon dioxide is then slowly released from the pressurized keg, the beer slowly displaces the carbon dioxide in the keg.

ENERGY BALANCE

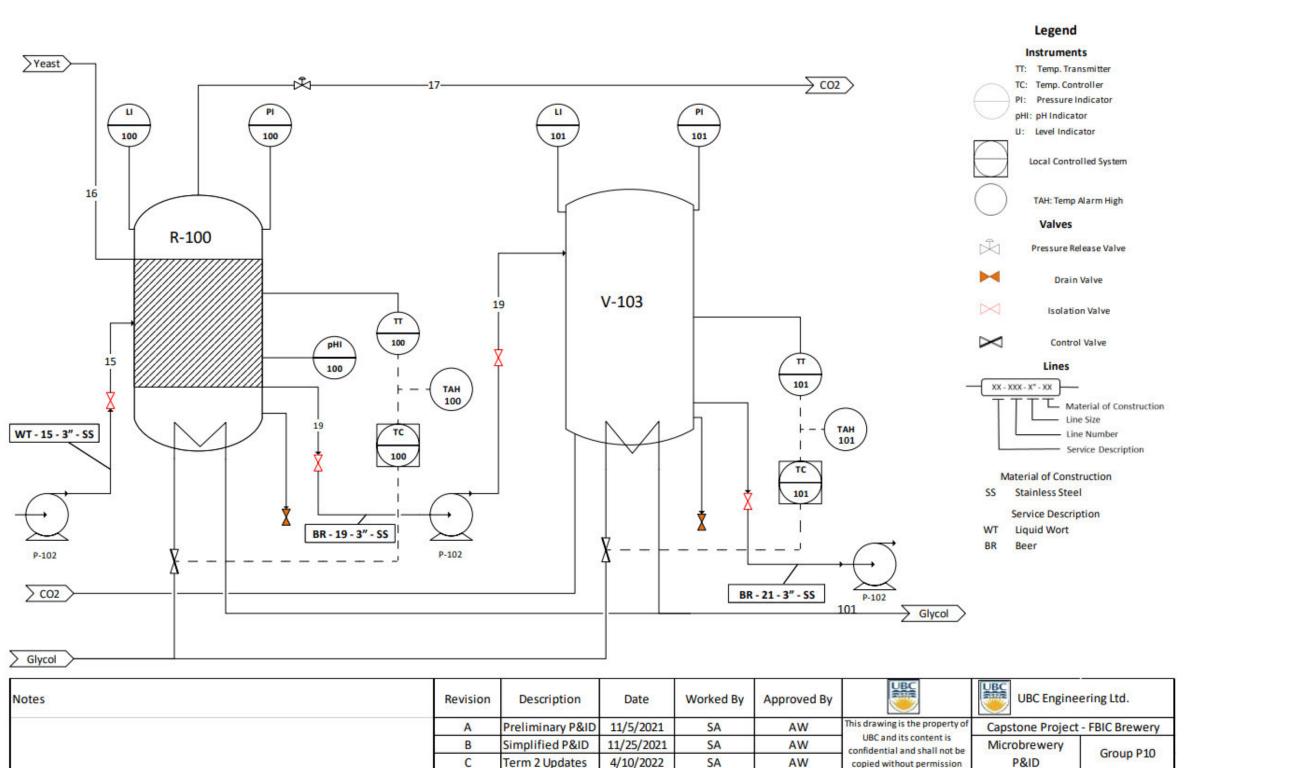
An energy balance was performed on each piece of equipment of the design and can be seen in Table 1 below. Mash/lauter tun and hops boiler are equipment for the hot side, and the streams are heated using steam through a steam jacket in the equipment. The steam is at room pressure for the mash/lauter tun, and the temperature is 70°C to heat malt and water, whereas, for the hops boiler, the temperature is 95°C to heat the wort. The temperature changes in the fermenter reactor by 2 to 3 degrees and is kept at 15°C to 20°C. The temperature is maintained by a cooling jacket containing glycol. A heat exchanger is also used to cool down the wort using water from the water tank. Cool water at 20°C goes in and cools the wort from the 95°C. Therefore, 2102 kilogram of water is needed to cool off the 1051 kilogram of wort. More water from the Metro Vancouver water system

is added to the process to accommodate the other water needs of the project. The specific heat capacity of wort and water is assumed to be the same for the calculations. However, the amount of water needed to cool off the wort is higher than the amount of wort because of this assumption. 963 kilograms of the water are recycled, and 1139 kilograms of water are disposed of. The disposed cooling water can be recovered if there is another storage tank.

Equipment Name	Equipment Number	Energy Required (kJ)	Utility Used for Energy Required
Mash/Lauter Tun	V-101	267764	Heating jacket (water)
Hops Boiler	V-102	176868	Heating jacket (water)
Wort Cooler	E-100	(43759)	Cooling water
Fermenter	R-100	N/A	Glycol
Bright Tank	V-103	(30506)	Glycol

Table 2: Energy requirement for pieces of equipment

EQUIPMENT LIST


The finalized equipment list is shown below in table 3. These pieces of equipment are also

described in the process synthesis.

Table 3: Equipment List

Equipment	Equipment Number	Equipment Type	Quantity	Flow Fluid
Malt Crusher	M-100	Mill	1	Malt
Mash/Lauter Tun	V-101	Vessel	1	Malt + Water Slurry
Water Vessel	V-100	Vessel	1	Water
Hops Boiler + Whirlpool	V-102	Boiler	1	Malt + Water + Hops Slurry
Wort Heater	E-100	Heat Exchanger	1	Malt + Water + Hops Slurry
Fermentor	R-100	Reactor	1	Malt + Water + Hops + Yeast Slurry
Bright Tank	V-103	Vessel	1	Malt + Water + Hops + Yeast Slurry
Keg-Filling Station	K-100	Packaging	1	Malt + Water + Hops + Yeast Slurry
Centrifugal Pumps	P-100, P-101, P102	Mass Transfer	3	Water+Wort+Beer

PROCESS AND INSTRUMENTATION DIAGRAM (P&ID)

UBC Engine	ering Ltd.
Capstone Project	- FBIC Brewery
Microbrewery P&ID	Group P10

P&ID CONTROL LOOP NARRATIVE

CONTROL SYSTEMS

Two feedback control loops will be implemented for the process. Simple control strategies are used because the process is a small-scale batch process.

<u>R-100 (Fermentation Tank) Temperature Control Loop</u>

With beer production being a biological process, controlling the tank temperature throughout the fermentation process is essential. The temperature is controlled for optimum yeast metabolism. The controlled temperature range varies depending on the desired type of beer. For this process, the temperature of the fermentation tank is measured by a temperature transmitter (TT 100). Depending on whether the measured value is higher or lower than the operator-set temperature range, the transmitter will send an electric signal to the temperature controller (TC 100) to either increase or decrease the amount of energy removed through the cooling coils.

V-103 (Bright Tank) Temperature Control Loop

Once the beer has been fermented for a certain amount of time, the yeast and other impurities are settled, and the finished beer is sent to the bright tank, ready for further packaging. The beer is kept at a cool temperature before further packaging, and this is done using a similar control loop as the fermentation tank. The vessel's temperature is measured by a temperature transmitter (TT 101), and this signal is sent to the vessel's temperature controller (TC 101), which increases or decreases the amount of energy removed through the cooling coils, depending on the operator set-point.

Isolation Valves, Drain Valves, and Maintenance Access

Isolation valves are mainly installed on pipe streams coming in and out of the tanks that contain non-gaseous components. The presence of isolation valves also allows maintenance on pipelines without potential contamination of the product in the tanks. These pipelines are removable hoses that are going to be connected to the main valve control board. In addition, drain valves are installed after each isolation valve on the pipeline, as well as at the bottom of the tanks. Their installation allows for more straightforward methods of disposal if required.

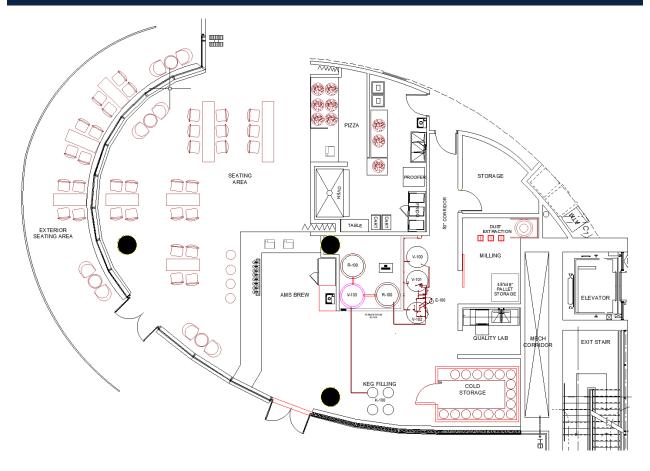
Equipment Protection and Control Safety Logic

As this is a brewing process at a smaller scale of production, the accumulation of hazardous levels of carbon dioxide is unlikely, nor are high pressures within tanks achieved. However, pressure transmitters are installed on the tanks and an outlet stream of carbon dioxide gas to allow for monitoring. In addition, pressure relief valves are installed on gaseous streams to allow for easy release of any build-up pressure that may occur during the process.

Pipe Specifications

Beer can be considered a Newtonian liquid, and thus 3" stainless steel pipes will be used throughout the brewery. Steel pipes may be used for the transport of water from the water vessel throughout the brewery house, as well as for any waste effluent. Furthermore, polyvinyl chloride pipes (PVC) will be used for lines containing the excess carbon dioxide and carbon dioxide for carbonation, as it is a cheaper alternative to stainless steel at lower operating pressures. Polypropylene-R or Aquatherm pipes are commonly used for cooling systems in breweries [8].

Control Loop Narrative


Table 4: Control Logic Narratives

	Control Logic Narrative: Fermentation Tank (R-100)
Description	Temperature of the fermentation tank is adjusted to maintain tank temperature at 20°C.
Control Loops	TT100 measures the tank temperature and TC100 adjusts the flow control valve of the glycol stream.
Alarms	A high temperature alarm (TAH 100) is used to prevent the tank from reaching too high of a temperature such that it disrupts fermentation.
Trips	N/A

	Control Logic Narrative: Bright Tank (V-103)
Description	Temperature of the bright tank is adjusted to maintain tank temperature at 10°C.
Control Loops	TT101 measures the tank temperature and TC101 adjusts the flow control valve of the glycol stream.
Alarms	A high temperature alarm (TAH101) is used to prevent the bright tank from reaching too high of a temperature such that it reduces the quality of the final product.
Trips	N/A

PLANT LAYOUT

UBC

Figure 4: Plant Layout

The plant will be located on the University of British Columbia campus, specifically inside the AMS student nest on the ground floor south side of the building. The building is accessed via the University Boulevard road or the East mall pedestrian road. The blueprint and the plant area are provided by the sponsor of the project [9], Michael Kingsmill from the AMS. The space utilization was then completed by adding the equipment and dividing the area available accordingly; above is figure 4, which shows the completed plant layout of the project. The area will be split into two parts, a seating area and the backroom area. The seating area is divided into an interior and an exterior part. The backroom is more complex, having a quality lab, storage, fridge, milling room, fermenting block, and the brewhouse. The microbrewery offers four access points in total, 2 for

the seating area and 2 for the back storage and brew area. Each area has one door connecting them to the rest of the building and one door that exists outside the building. One access point is a loading zone located on the south of the plant, and it comes with two doors that can fully open and offers a sufficient opening to fit the equipment and material.

Most of the equipment (R-100, V-100, V-101, V-102, and V-103) needed to start the brewing is placed in the middle of the backroom area in the fermentation block, and that is to allow for the beer to be sent out to other stations without having to cross the whole facility and minimize tripping hazards. The fermentation block is enclosed with a curb to contain any spillage. This drainage curb is meant to direct all of the spilled liquid into the sewage system, preventing possible hazards. The milling station is placed in a separate room equipped with a dust extraction system as milling barley produces a lot of fine particles that can be carried around by air; the room has a sliding door not to block the corridor in the back room. The keg filling station is placed next to the fridge to cool the kegs as soon as they are filled. A ventilation system is implemented all over the plant to ventilate the area as there will be steam buildup and will humidify the surrounding air, which can damage walls and offer an unpleasant environment. In case of a fire, the facility is equipped with fire extinguishers and has full sprinkler coverage; for evacuation, the two doors on the south side of the plant connect immediately to the outside as it is located on the ground floor.

HAZARD AND OPERABILITY ANALYSIS (HAZOP)

Hazard and Operability Analysis (HAZOP) is a structured and systematic technique for system examination, and risk management was performed on a micro-brewery to identify strategies for risk management.

In the CHBE Capstone course, in order to ensure an in-depth analysis and to simulate the rigour with which an actual HAZOP is conducted, it is recommended to pick only one node and focus on it rather than perform HAZOP for the entire process. However, in this project, HAZOP was performed on the whole process.

A variety of deviations could happen, including flow, temperature, leakage, pressure, etc. These hazards compromise employee safety and can jeopardize the entire product of the process, which is beer. Through these analyses, the causes and consequences are analyzed carefully for each deviation to realize the best practical safeguards and prevent any hazards from occurring by implementing alarms, control systems, and frequent inspections.

As part of the analysis, a risk factor is applied to each deviation based on the severity and the likelihood of the hazard. Accordingly, by studying the existing safeguards, the risk of each deviation is analyzed and reported. As a result, due to the existing safeguards, the risk rank for most of the deviations was low, and the only risk which ranked medium was "Workplace Safety Hazard" due to the high humidity produced by the process, which can be lowered by installing ventilation.

Deviations in the system can potentially lead to negative consequences. The consequences associated with a brewery can be either a leakage/rupture form or batch contamination. The deviations leading to leakage can happen for a variety of different reasons, including pipe connection issues, valve problems, drain clogging, or pump failure, while the deviations associated with batch contamination are incorrect amounts of water, a heating/cooling system malfunction, or a misdirected flow.

Several recommendations and required safeguards have been provided by studying the deviations and their consequences carefully. Some of the required safeguards include:

1. *Utilizing pipe clamps and check valves*: clamps are an efficient and tidy way to restrain, secure and guide tubing or conduit for a range of purposes. Moreover, check valves would help to prevent backflow in the process.

2. Labeling the pipes: proper labeling can prevent incorrect connections.

3. *Installing level control system*: level control systems halt excessive water in the system. They can also prevent bad batches due to wrong concentrations while reducing wastewater generated.

Besides the above-mentioned required safeguards, several recommendations have been suggested to lower the risk as much as possible such as maintaining and inspecting the plant frequently, isolating pipes, and regularly performing quality control on the batches. The HAZOP analysis conducted for this process showed a majority of low (L) risks that were evident in the design. The reasoning behind this is that the potential hazards found either had a low frequency of occurring, or a low severity of subsequent consequences.

STARTUP AND SHUTDOWN PROCEDURE

For this project, the start-up shutdown procedure is replaced by an operating procedure. Beer production is a batch process where equipment is started and shut down sequentially. Therefore, an operating procedure is more relevant than a start-up and shutdown procedure. The emergency shutdown procedure is not included as it lies outside the scope of this project.

PLANT STARTUP

This process is started from front to back as this is a batch process.

- The Hot water storage tank should have the water at room temperature before the process starts.
- The barley grains should be milled with M-100.
- The grains from M-100 to mash tun (V-101) will be transferred by hand
- Pump (P-100) the water from the storage tank (V-100) to the mash tun/lauter tun (V-101)
- Turn on mash tun (V-101) and adjust the temperature controller. The temperature of the mash/lauter tun is set to 70 degrees Celsius
- Pump (P-100) the wort from the mash tun (V-101) to the hops boiler/whirlpool (V-102)
- Connect the water pipe from the heat exchanger (E-100) to the water vessel (V-100). The heat capacity of wort can be assumed to be the same as water and the amount of room temperature water can be calculated from that.
- Pump (P-100) the wort to hops boiler/whirlpool (V-102)
- Turn on the heating jacket for V-102 and set the temperature to 95 degrees Celsius.
- Turn on the heat exchanger (E-100) and pump (P-101) the room temperature water from the water storage tank (V-100).
- Transfer wort from V-102 to fermentor (R-100) through the HX using the pump (P-102).
 From start to this step should take 8 to 10 hours.
- Add yeast to the fermentor and turn on the cooling jacket. The reactor needs to be cooled with glycol circulating through the jacket and the temperature will be set between 15 to 20 degrees Celsius depending on the beer type. The fermentation step takes 2 weeks.

- Transfer beer from fermenter to bright tank (V-103) using a pump (P-102). The beer needs to be aged for 2 days in a bright tank.
- Carbonate the bright tank using carbon dioxide tanks.
- After completion transfer beer from the bright tank (V-103) to the keg-filling station (K-100) using a pump (P-102) for packaging of the beer

PLANT SHUTDOWN

The brewing is a batch process and due to the logistics of microbrewery any equipment which is not in use will be turned off as soon as possible. For example, once the wort reaches the fermenter every other equipment on the hot side of the process can be turned off.

- After the milling is done the station (M-100) can be turned off and the machinery can be cleaned off.
- After the pumping process is done, clean all pumps (P-100, P-101, P-102) by pumping clean water through them.
- The mash tun/lauter tun (V-101) can be turned off and the cake bed formed at the false bottom can be removed and disposed of.
- After the wort is transferred to the fermenter (R-100), the hops boiler/whirlpool (V-102) can be turned off along with its heating jacket.
- Hops boiler/whirlpool (V-102) should be cleaned once it cools off to room temperature.
- Turn off the heating jacket for the reactor (R-100) after the beer is pumped to the bright tank (V-103).
- Remove any yeast left in the tank and clean out the fermenter after shutdown.
- Turn off carbon dioxide tanks after checking all fittings.

```
THE UNIVERSITY OF BRITISH COLUMBIA
```


- After the beer is filled to the kegs (K-100) then the bright tank pressure valves should be opened to ensure that there is no pressure build-up inside the tank.
- Turn off all water pipes.
- Ensure all kegs have been stored safely in the fridge.
- Ensure any spillage that may have occurred has been cleaned and equipment is ready to use for the next batch.

CIP PROCEDURE

The CIP procedure is done at the end of every batch. It is done to clean and sanitize the machines, without disassembly, in preparation for the following batch.

- A pre-rinse with water, or a slightly caustic solution, is done throughout the system to wash out the majority of the solids that have been left behind.
- A caustic (NaOH) rinse is followed to break down the organic compounds and can be recaptured again to be reused for up to a few cycles.
- The system is then rinsed again with water, which can be recaptured for future CIP usage.
- An acid (H₃PO₄) rinse is followed to remove any beerstone build-up, which is a precipitate that is formed due to the caustic rinse, hard water minerals (i.e. calcium, magnesium), and proteins in the form of amino acids.
- The system is once again rinsed with water, which can also be recaptured for future CIP usage.
- A final sanitizing rinse is done using peracetic acid to prepare the system for the next batch.

ECONOMIC ANALYSIS

UBC

TOTAL CAPITAL EXPENDITURE (CAPEX)

EQUIPMENT COST BREAKDOWN

For this project, all values are reported in Canadian Dollars (CAD). The exact equipment cost is confidential; therefore, approximate costs are provided for the equipment breakdown. The cost data was received from the project sponsor and sourced from an equipment manufacturer. Table 5 below shows an approximate equipment breakdown.

Equipment Description	Number of Equipment	Total Estimated Cost (CAD)
Mash/lauter tun	1	60,000
Hops Boiler	1	40,000
Controllers and Valves	-	20,000
Pumps	3	15,000
Milling Station	1	25,000
Fermenters	2	30,000
Bright Tank	1	15,000
Temperature Control System	-	25,000
Keg Station	1	30,000
Miscellaneous	-	40,000
Total	10	300,000

Table 5: Equipment Cost Breakdown

TOTAL CAPITAL EXPENDITURE (CAPEX)

Capital expenditure is a combination of direct and indirect costs. The costs are estimated using Lang factors for a solid-liquid processing facility. The Lang Factor is an estimated ratio of the total cost of creating a process within a plant to the cost of delivered equipment. The delivered equipment cost is 110% of the purchased equipment cost. However, not all the costs identified in

the Lang factor apply to this microbrewery. For example, cost estimates for yard improvements, land and service facilities do not apply as it is a brownfield project with different requirements. Total direct plant (TDP) costs account for delivered equipment, installation, instrumentation & piping, electrical, and building services. TDP accounts for 55% of the CAPEX. Indirect costs account for 16% of the CAPEX and include engineering services and construction costs. Working capital is approximated as ~15% of the CAPEX. Table 6 has a detailed breakdown of CAPEX.

Table 6: Total Capital Expenditure - CAPEX

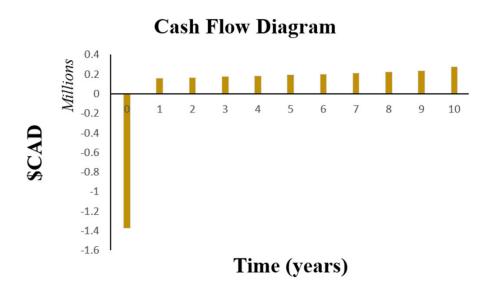
	Lang Factor (Solid-Fluid)	Cost (CAD)
Direct Costs		
Purchased Equipment	-	300,000
Delivered Equipment	1	330,000
Installation	0.39	128,700
Instrumentation	0.13	42,900
Piping	0.31	102,300
Electrical	10	33,000
Building and Services	29	95,700
Total Direct Plant Cost	222	732,600
Indirect Costs		
Engineering and Services	32	105,600
Construction Expenses	34	112,200
Total Indirect Costs	-	217,800
Total Direct and Indirect Costs	288	950,400
Contractors Fee (5%)	18	59,400
Contingency (10%)	36	118,800
Fixed Capital Investment (FCI)	342	1,128,600
Working Capital (15% TCI)	74	205,920
Total Capital Investment	416	1,372,800

ANNUAL OPERATING COST

The total operating costs are estimated to be \$210,000. Operational costs are calculated on an annual basis for this project. The annual cost is estimated assuming that four batches are produced monthly. Raw materials, utilities, operation labor, and revenues are calculated individually, while the other values are calculated using estimates from literature resources (10). For maintenance and operating supplies, the lower end of the estimation chosen as that is assumed to be more accurate because the maintenance process is relatively simple. These costs mentioned above are part of the direct production costs and account for 58% of the OPEX. Table 7 below shows a breakdown of the annual operating costs.

Description	Calculation Basis	Cost (CAD)
Raw Materials	Calculated from Mass Balance	11,025
Operation Labour	Calculated from avg cost	81,738
Utilities	Calculated from avg brewery energy usage	5,313
Maintenance and Repairs	2% of FCI	22,572
Operating Supplies	10% of Maintenance & Repairs	2,257
Direct Production Cost (DPC)		122,905.20
Local Taxes	2% of FCI	22,572
Insurance	Avg annual BC brewery insurance	15,000
Fixed Charges		37,572
Plant Overhead Costs	10% of TPC	21,115
Manufacturing Costs	Sum of DPC, Plant Overhead, Fixed Charges	181,593
Administrative Costs	4% of TPC	8,446
Distribution and Selling Costs	10% of TPC	21,115
General Expenses		29,562
Total Product Cost (TPC)		211,154

Table 7: Annual Operating Cost - OPEX


Yeast, hops and malt contribute to the cost of the raw materials, which is estimated to be \$11,000. The cost of water required is calculated as part of utilities. The amounts are determined using the mass balance in the PFD. Three principal utilities are used for the brewing process that is: electricity, natural gas, and water. The cost estimate for water used here is the same as raw material water which is why the cost is only included in utilities and not as part of raw materials. Only two operational workers are required for the process, one full-time and one part-time. The full-time brewmaster will be available to oversee the operation each working day. The part-time brewmaster will be working on brewing days. A detailed breakdown of each component can be found in appendix F.

REVENUE

The revenue is calculated on four batches per month basis. The estimated selling price for one litre of beer is set at \$8. This selling price is estimated from a cost comparison across other BC craft beers in the target market. Given that each batch is 1000L, it is assumed that roughly 5% will be lost in packaging and spillages. Therefore, the final product volume is estimated to be 950L of beer per batch. The estimated monthly and annual revenue is \$30,000 and \$360,000, respectively.

ECONOMIC ASSESSMENT

Initial gross revenue is expected to be approximately \$360,000, with an initial net profit of \$150,000. It is assumed that the facility will operate at a fixed capacity for the next ten years, with a salvage value of \$30,000 at the end of the 10-year period, which is estimated as 10% of the equipment cost. The payback period is estimated to be seven years, with an internal rate of return of 12%. Figure 5 below shows the expected cash flow diagram for the 10-year period.

Figure 5: Cash Flow Diagram

ENVIRONMENTAL ANALYSIS

The Microbrewery is a brownfield project as the brewery will be built on a pre-existing area in UBC AMS Student Nest. As it is mentioned in the plant layout, there are two entrances to transport the equipment for this project, with one of them being an exit to the outside of the building. If needed, the equipment can be transported from the shipping/receiving area of the UBC AMS Student Nest and then received through the inside of the building entrance. These entrances can also be seen in the figure below.

The Province of British Columbia has regulations in place to review projects which will be built inside the province under the BC Reviewable Projects Regulation. This particular act defines what type of projects and discharges are required to be reviewed by BC, and the microbrewery waste streams are well within the regulations. Brewing is also not a directly specified field under this Environmental Assessment Act of Reviewable Projects Regulation. While this project is not under the reviewable act, it must follow the municipal bylaws and provincial general regulations such as

THE UNIVERSITY OF BRITISH COLUMBIA

Sewerage System Regulation and Greenhouse Gas Industrial Reporting and Control Act. This project also needs to follow the Fermentation Operations Bylaw of Metro Vancouver.

The permits required for this brewery are the Manufacturer's License which is required to produce alcoholic beverages, and a liquor permit is needed to sell the said alcoholic beverage. While they are not necessarily environment-related, there are still two permits required for this facility's operation. In addition, there are three main waste streams which are solids, liquids, and gas.

GAS EMISSIONS

Carbon dioxide is produced during the fermentation process, and the amount of carbon dioxide produced during a batch is 48 kilograms. This carbon dioxide is considered biogenic, and thus it does not need to be reported according to BC regulations. Furthermore, the carbon dioxide amount which requires reporting is 10000 tonnes according to Greenhouse Gas Reporting Regulations[15], and this brewery design only produces 2 tonnes of carbon dioxide per year.

Another consideration is the carbon dioxide production from using natural gas to heat jacketed equipment. 3.4 GJ is the amount of energy that is needed from natural gas combustion[12], and the amount of carbon dioxide which is released from this act is estimated to be around 53 kilograms per batch (2.5 tonnes per year) [11]. This is also within the regulations, and it does not need to be reported to the provincial government.

SOLID WASTE

Three types of solid waste streams exit the project. The spent malt grains (45 kg/batch) from the mash and lauter tun, spent hops (4kg/batch) from the hops boiler/whirlpool vessel, and the spent yeast (10kg/batch) from the fermenter. The best and cheapest way to dispose of these solids for a microbrewery is to partner with farms to arrange pick-ups or drop-offs. The farms use these solids

as animal feed which is also a more sustainable option than composting. Otherwise, these solids would need to be disposed of as organic waste, which would also cost some extra money.

LIQUID WASTE

There are four waste streams from the process for liquid: wastewater from the lautering process, hops boiling process, cooling water from the heat exchanger, and, in some instances, batch disposal. Each of these processes has its own rules regarding its disposal.

The cooling water from the heat exchanger will be recycled as much as possible to the water storage tank; however, the excess amount will need to be discharged into the sewage system. The recycled amount of water is 963 kg/batch. The cooling water that needs to be disposed of is 1139 kg/batch. This water is subject to Vancouver Sewage Bylaws [13] and Fermentation Operation Bylaws [14]. Cooling water is free from solids and contaminants, and thus it is allowed to be discharged into sewage according to Sewage Bylaws. According to Fermentation Operation Bylaws, any discharge between 200 to 2000 litres in a single day requires the brewery to notify the city about the discharge. The wastewater from the hops boiling and lautering process can be disposed of on different days if needed. Otherwise, the brewery would need to apply for city permission to dispose of all the wastewater on the same day. This is also true for other liquid disposals from these processes, as these process waste streams do not exceed this amount. It is also recommended that another water storage tank be purchased after the operation starts to store more of the cooling water to decrease the water usage of the process.

Table 8: Liquid Waste Streams

Waste Liquid	Amount (kg/batch)
Batch Disposal	1007 (beer)
Wastewater from lautering process (from slurry and inside the vessel)	1535 (wort)
Wastewater from hops boiling process(includes condensed steam)	859 (wort)

Batch disposal and wastewater from the other process are also within the guidelines which are discussed for the cooling water; however, these waste streams are also subject to additional regulations under the Fermentation Operation Bylaws. These streams can be seen in table 8. The maximum suspended solids amount which can be discharged is 600 ppm [K-4], and the typical brewery wastewater will have around 50 to 500 ppm [16]. These liquids will need to be tested for pH before disposing of them, as disposal's pH allowance is between 5.5 to 10.5. Therefore, typically the wastewater should be around 6 to 7 pH. For the instances where pH is found to be more acidic, the waste can be neutralized in the containers with food-grade approved bases such as baking soda and calcium carbonate [17].

Other than the primary process itself, the CIP process also produces wastewater during the cleaning of the equipment. The caustic chemicals (specifically sodium hydroxide and phosphoric acid) are used to create a mixture that is used to wash the equipment. The rinse water needs to be tested for pH before it can be disposed of due to the Sewage and Fermentation Operations Bylaws.

RECOMMENDATIONS

UBC

IMPLEMENTED RECOMMENDATIONS FROM TERM 1

2-Vessel CIP equipment is recommended instead of manual cleaning because, according to resources, automated cleaning saves up to %40 of water during the cleaning phase [16]. The plant layout is designed to accommodate the equipment as well. The brewery is also designed with a 2-vessel brewhouse instead of a 3-vessel brewhouse to allow more space to work for the brewmaster and to accommodate CIP equipment.

FUTURE IMPLEMENTATIONS

The following brewing schedule is recommended for the brewery. The optimal setup of having two fermenters and one bright tank provides four batches of thousand litres, in total approximately 4000L per month.

Batches are added alternatively for fermenting after every two weeks. A gap of two days is given to perform CIP. A similar procedure is implemented for the bright tank, a batch is produced every week, and sufficient time is left for cleaning. It should be noted that during the first month after equipment setup, there will be a wait time of two weeks for the initial batch brew, but for subsequent months four batches per month can be expected.

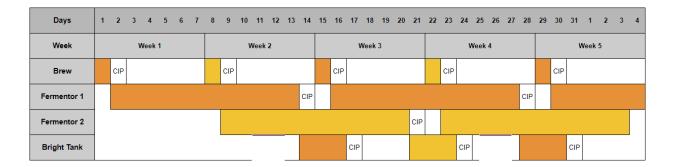


Figure 6: Recommended Brewing Schedule

THE UNIVERSITY OF BRITISH COLUMBIA

Another recommendation that group P-10 suggests is to look into adding another water storage tank to recycle more of the cooling water that is used on the heat exchanger. The current design tries to recycle as much as possible with the existing water tank; however, the size of the water tank is the limiting factor. Initially, all of the water inside the water tank is used as more water to the tank is added from the city system as needed throughout the process. Because of that, more water is in the process than what that one water storage tank can hold. According to resources, when considering the disposal of spent material, it is feasible to reuse this organic waste as biomass [18] for energy generation or fertilizers for crops.

An additional small storage tank can be added as part of the CIP system to collect the CIP water. The final rinse water for equipment cleaning generated during CIP can be collected in the storage tank. This water can be used for the pre-rinse stage for the following equipment. This practice alone can reduce the water used during CIP by 40% [16]. The tank size should be large enough to prevent overflow by ensuring the volume of water of the final rinse and pre-rinse is approximately the same.

CONCLUSION

This term, group P-10 has performed the HAZOP study, startup and shutdown procedure, environmental analysis and economic assessment for the process. In addition, equipment sizing has been done this term along with the final energy, and the mass balances have been prepared for the current process design, which produces 1000L of beer per batch and four batches per month. Control narratives have also been updated for the fermenters and bright tank.

The final design of the AMS microbrewery that has been designed by P-10 is presented in this report. Final iterations have been made upon the analysis of economic and sustainable process

THE UNIVERSITY OF BRITISH COLUMBIA

steps. In doing so, a feasible waste management system for both solid and liquid waste has been designed. In terms of waste management, P-10 has worked on recycling the spent grains from the lauter tun and the spent yeast from the fermentation tank. The goal is to recycle solid waste into reusable materials and energy sources such as animal feed, biomass, and fertilizers. In terms of water treatment, the aim is to recycle the water using CIP techniques and cooling water from the heat exchanger. The final design's environmental and economic analyses have been done, along with the optimization of the design, hazard, and operability. Apart from the implemented solutions of waste management and economic surplus, multiple recommendations have been provided to improve the overall process.

ACKNOWLEDGMENTS

Dr. Jonathan Verrett

Professor, UBC CHBE

- Provided valuable feedback throughout the term
- Arranged the site visit for the brewery,

Mr. Sergio Berretta,

Adjunct Professor, UBC CHBE

• Provided feedback

Mr. Michael Kingsmill

AMS Executive, UBC

- Describe stakeholder requirements
- Provided feedback on progress

Dr. Kerwin Wong

Brewer, Slow Hand Beer Company

- Gave us a tour of the brewery
- Provided advice on our project

REFERENCES

[1] "113 reports in food," Food & Beverage Industry Size, Trend, Share & Market Research *Report*. [Online]. Available: https://www.bccresearch.com/market-research/food-and-beverage.
[Accessed: 17-Dec-2021].

[2] Published by Jan Conway and O. 15, "World beer production," *Statista*, 15-Oct-2021.[Online]. Available:

https://www.statista.com/statistics/270275/worldwide-beer-production/. [Accessed: 17-Dec-2021].

[3] "Sustainability Energy Manual - Brewers Association." [Online]. Available: https://www.brewersassociation.org/attachments/0001/1530/Sustainability_Energy_Manual.pdf.
[Accessed: 17-Dec-2021].

[4] "Beer - worldwide: Statista market forecast," *Statista*. [Online]. Available: https://www.statista.com/outlook/cmo/alcoholic-drinks/beer/worldwide. [Accessed: 17-Dec-2021].

[4.1] "The lefty way," *Left Hand Brewing*. [Online]. Available: https://lefthandbrewing.com/our-story/sustainability. [Accessed: 11-Apr-2022].

[5] B. Bleier, A. Callahan, S. Farmer, and H. Min, "Craft beer production - university of Pennsylvania," Apr-2013. [Online]. Available:

https://repository.upenn.edu/cgi/viewcontent.cgi?article=1049&context=cbe_sdr. [Accessed: Sep-2021].

[6] T. Hampson, "The oxford companion to beer definition of Lauter Tun," *Craft Beer & Brewing*. [Online]. Available: https://beerandbrewing.com/dictionary/b69DWCRC5H/.[Accessed: Oct-2021].

[7] "Mash physics," RSS. [Online]. Available:
https://jansson.us/MashPhysics.html#:~:text=We%20compute%20each%20ingredient's%20heat,
the%20specific%20heat%20of%20water. [Accessed: 17-Dec-2021].

[8] "A Look at the Best Brewery Piping and Tubing Options", Equippedbrewer.com, 2021.[Online]. Available: https://www.equippedbrewer.com/production-and-operations/a-look-at-the-best-brewery-piping-and-tubing-options. [Accessed: 16- Dec- 2021].

[9] Kingsmill, Michael. "AMS microbrewery plant layout." 2022.

[10] K. Smith, "Engineering Economics for CHBE453/4." [Online]. Available: https://canvas.ubc.ca/courses/87685/pages/economics-resources?module_item_id=4243776.
[Accessed: 15-Apr-2022].

[11]"U.S. Energy Information Administration - EIA - independent statistics and analysis," *Natural gas and the environment - U.S. Energy Information Administration (EIA)*. [Online]. Available: https://www.eia.gov/energyexplained/natural-gas/natural-gas-and-theenvironment.php#:~:text=Natural%20gas%20is%20a%20relatively%20clean%20burning%20fos sil%20fuel&text=About%20117%20pounds%20of%20CO,MMBtu%20of%20distillate%20fuel
%20oil. [Accessed: 12-Apr-2022].

[12] "Our most powerful & efficient line of Custom Brewing Systems," *ICC Northwest*.[Online]. Available: https://icc-nw.net/beer/. [Accessed: 12-Apr-2022].

[13] "Bylaws," Metro Vancouver. [Online]. Available:

http://www.metrovancouver.org/boards/bylaws/Pages/default.aspx. [Accessed: 12-Apr-2022].

[14] M. Vancouver, "Operations regulated by this bylaw," *Metro Vancouver*. [Online].
Available: http://www.metrovancouver.org/services/Permits-regulations-enforcement/liquid-waste/fermentation-operation-regulatory-program/facilities-covered/Pages/default.aspx.
[Accessed: 12-Apr-2022].

[15] Greenhouse gas emission reporting regulation. [Online]. Available: https://www.bclaws.gov.bc.ca/civix/document/id/lc/statreg/249_2015. [Accessed: 12-Apr-2022].

[16] "Sustainability - water wastewater - brewers association." [Online]. Available: https://www.brewersassociation.org/attachments/0001/1517/Sustainability_-

_Water_Wastewater.pdf. [Accessed: 13-Apr-2022].

[17] "The principles of ph," *Brew Your Own*, 25-Nov-2020. [Online]. Available:
https://byo.com/article/the-principles-ofph/#:~:text=To%20lower%20pH%2C%20brewers%20often,to%20directly%20lower%20mash%
20pH. [Accessed: 12-Apr-2022].

[18] M. Carlini, D. Monarca, S. Castellucci, A. Mennuni, L. Casini, and S. Selli, "Beer spent grains biomass for biogas production: Characterization and anaerobic digestion-oriented pre-

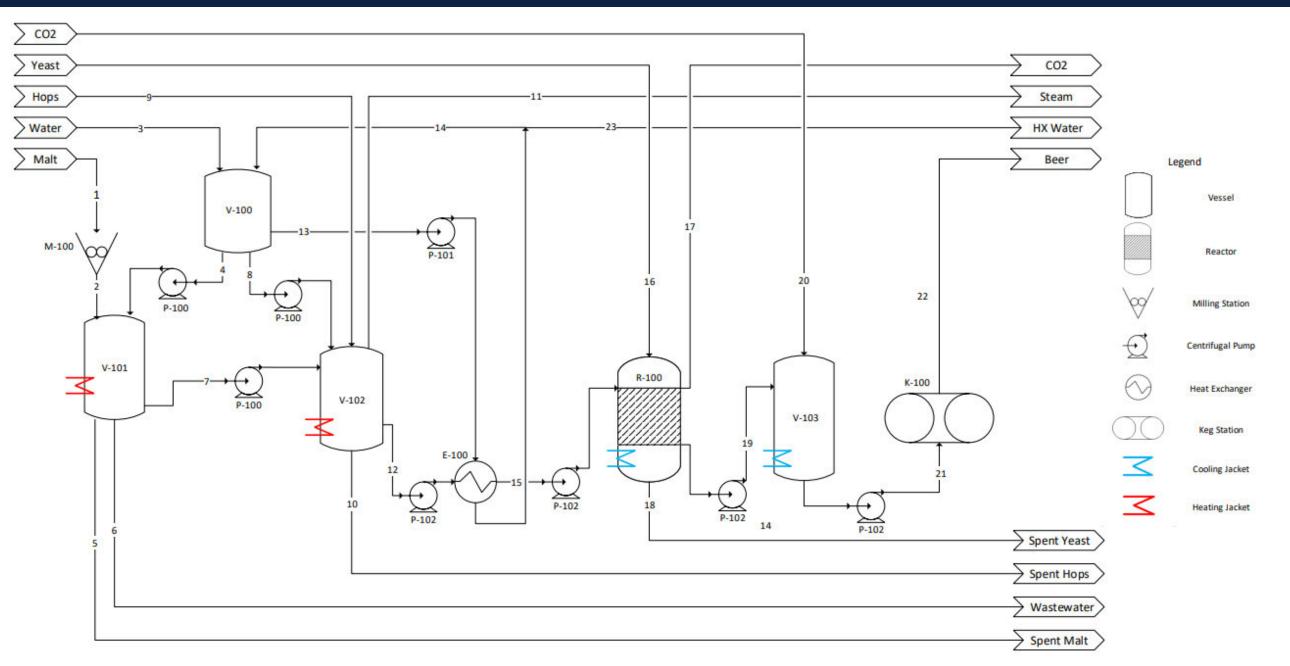
treatments," Energy Reports, 16-Nov-2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S235248472100514X. [Accessed: 15-Apr-2022].

[19] "Our most powerful & efficient line of Custom Brewing Systems," *ICC Northwest*.

[Online]. Available: https://icc-nw.net/beer/. [Accessed: 15-Apr-2022].

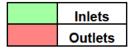
[20] "British Columbia Utility Bills: How much does it cost for electricity, water, gas, internet, Cable & Home Phones in 2022?," *MovingWaldo*, 02-Feb-2022. [Online]. Available:


https://www.movingwaldo.com/daily-living/bc-utility-bills-how-much-does-utilities-cost/.

[Accessed: 15-Apr-2022].

APPENDIX A: PFD & P&ID

PROCESS FLOW DIAGRAM (PFD)


Notes	Revision	Description	Date	Worked By	Approved By	UBC	UBC Enginee	ering Ltd.	
	А	Preliminary PFD	11/5/2021	SA	AW	This drawing is the property of	Capstone Project	FBIC Brewery	
	В	Simplified Process	11/25/2021	SA	AW	UBC and its content is confidential and shall not be	Microbrewery	Group P10	
	С	Term 2 Updates	4/10/2022	SA	AW		Process Flowsheet	Group P10	

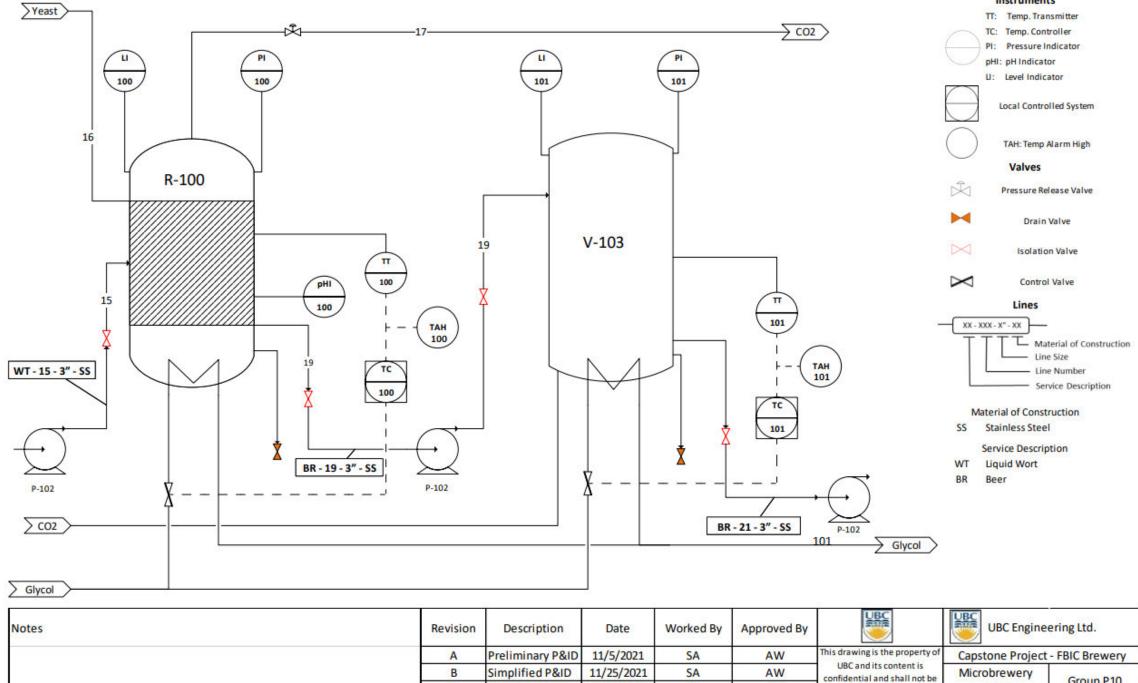

STREAM TABLES

Table 9: Stream Table and Mass Balance

Stream Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
			Wate																				
From	Malt	M-100	r	V-100	V-101	V-101	V-101	V-100	Hops	V-102	V-102	V-102	V-100	E-100	E-100	Yeast	R-100	R-100	R-100	CO2	V-103	K-100	E-100
	M-				Spent	Waste				Spent								Spent					HX
То	100	V-101	V-100	V-101	Malt	water	V-102	V-102	V-102	Hops	Steam	E-100	E-100	V-100	R-100	R-100	CO2	Yeast	V-103	V-103	K-100	Beer	Water
Temperature(C)	25	25	25	25	70	70	70	25	25	95	100	95	20	57.5	20	20	20	20	20	10	10	10	20
Pressure(atm)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Mass flow rate																							
(kg/batch)	285	285	4,394	1,650	228	1,353	1,901	57	4	740	172	1,051	2,102	963	1,051	10	48	10	1,018	2.2	1,007	1,007	1,139
Component mass	flowrat	e (kg/batc	h):																				
Malt	285	285	0	0	45	0	239	0	0	48	0	191	0	0	191	0	0	0	95	0	95	95	0
Hops	0	0	0	0	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0
Yeast	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	10	13	0	0	0	0
Water	0	0	4,394	1,650	183	1,353	1,663	57	0	688	172	860	2,102	963	860	0	0	0	860	0	860	860	1,139
CO2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	48	0	2.3	2.2	5	5	0
Alcohol	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	48	0	48	48	0

PROCESS AND INSTRUMENTATION DIAGRAM (P&ID)

C

Term 2 Updates

4/10/2022

SA

AW

copied without permission

Legend

Instruments

UBC Engine	ering Ltd.
tone Project	- FBIC Brewery
obrewery P&ID	Group P10

APPENDIX B: SAMPLE CALCULATIONS

Energy Balance Calculations:

$$Q = m^*c^*\Delta T$$

Where Q = heat energy in kJ m = Mass of material in kg c = heat capacity in kJ/kg.K $\Delta T = change in temperature in$

Q = mL

Where Q = heat energy in kJ m = Mass of material in kg L = latent heat of material in kJ/kg

		Mash	-Lauter Tunl	(V-101)		
			Input	C	Output	
Material	Heat Capacity (kJ/kg.K)	Quantity (kg)	Temperature ©	Quantity (kg)	Temperature ©	Energy Difference (kJ)
Malt	2	228	25	228	70	18878
Water	4	1320	25	1320	70	248886
					Total	267764
Utilities	Latent Heat (kJ/kg)	Quantity (kg)	Temperature ©	Quantity (kg)	Temperature ©	Energy Difference (kJ)
Steam (1bar)	2258	119	100	1	100	267764
					Total	-

Hops Boil (V-102)

			Input	C	Output	
Material	Heat Capacity (kJ/kg.K)	Quantity (kg)	Temperature ©	Quantity (kg)	Temperature ©	Energy Difference (kJ)
Malt	. 2	228	70	228	95	10488
Water	4	1320	70	1320	100	165924
Hops	2	4	25	4	95	456
					Total	176868
Utilities	Latent Heat (kJ/kg)	Quantity (kg)	Temperature ©	Quantity (kg)	Temperature ©	Energy Difference (kJ)
Steam (1bar)	2163	82	134	2163	134	176868
					Total	176868

			Fe	ermentor (R-1	LOO)			
			I	nput	C	output	_	
Material	Heat Capacity (kJ/kg.K)		Quantity (kg)	Temperature ©	Quantity (kg)	Temperature ©	Energy Difference (kJ)	
Wort:								
Malt		2	153	20	153	20	T	
Water		4	688	20	688	20	-	
Hops		2	0	20	0	20	1	
Yeast		4	8	20	8	20		
						Total		

Heat Exchanger (E-100)

			I	nput	С	output	_
Material	Heat Capacity (kJ/kg.K)		Quantity (kg)	Temperature ©	Quantity (kg)	Temperature ©	Energy Difference (kJ)
Purified water		4	770	25	770	85	193578
Wort:							
Malt	-	2	153	95	153	20	-21114
Water		4	688	95	688	20	-216204
Hops	1	2	0	95	0	20	-19
						Total	-43759

		Br	ight Tank (V-	103)		
			Input	C	Output	
Material	Heat Capacity (kJ/kg.K)	Quantity (kg)	Temperature ©	Quantity (kg)	Temperature ©	Energy Difference (kJ)
Wort:						
Malt		2 76	20	76	10	-1391
Water	1	4 688	20	688	10	-28827
Hops		2 0	20	0	10	-3
Yeast	1	4 8	20	8	10	-285
CO2		1 2	10	4	10	0
					Total	-30506

Utilities	Latent Heat (kJ/kg)	Quantity (kg)	Temperature ©	Quantity (kg)	Temperature ©	Energy Difference (kJ)
Ethylene Glycol	800	38	15	25	15	30506
					Total	-30506

Line size calculation : Liquid Sample Calculation Media Inlet to Fermentor : R-100 V=4.1 m³ fill in 15 mins the methodology applied to all line size colculation $Q = V_{f} = \frac{4.1m^{3}}{900s} = 4.556 \times 10^{-3} m^{3}/s$ Recommended volocity : = V = 3 m/s $A_{p} = Q_{1x} = \frac{4.556 \times 10^{-3} (m^{3}/s)}{3 (m(s))} = 1.5185 \times 10^{3} m^{2}$ $D_{p} = \sqrt{4A_{p}/T} = 0.04397 \text{ m} \times 39.37 \frac{10}{100}$

Q=m.c.
$$\Delta T$$

For Heat Exchange
 $q_{5^{0}} \leq z_{0}^{2} \mod z_{0}$ required
Wort anount = 1051 kg/batch
assure c is same for wort
that they are similar.
 $m_{c-} q' \cdot dT = m_{2} q' \cdot dT$ where nax calls
 $m_{c-} q' \cdot dT = m_{2} q' \cdot dT$ where nax calls
 $m_{c-} q' \cdot dT = m_{2} (57.5-20)$
 $37.5^{\circ}c$
 $m_{2} = 2102$ kg of water needed
 $2102 - q63 = 1139$ kg has to be disposed of
 $recycelle arounts$

THE UNIVERSITY OF BRITISH COLUMBIA

Mass balance for HX

Line size calculation : Liquid Sample Calculation Media Inlet to Fermentor : R-100 V=4.1 m³ fill in 15 mins the methodology applied to all line size colculation $Q = V_{f} = \frac{4.1m^{3}}{900s} = 4.556 \times 10^{-3} m^{3}/s$ Recommended volocity : = V = 3 m/s $A_{p} = Q_{1x} = \frac{4.556 \times 10^{-3} (m^{3}/s)}{3 (m(s))} = 1.5185 \times 10^{3} m^{2}$ $D_{p} = \sqrt{4A_{p}/T} = 0.04397 \text{ m} \times 39.37 \frac{10}{100}$

APPENDIX C: EQUIPMENT LIST AND SPECIFICATION SHEET

Malt crusher / Milling station (M-100)

	UBC					eet - Malt Cru		Equipment Number M-100
Unit Name: N	Aalt Crusher							
1	ISSUED FOR:		Proposal					
2	SERVICE		Milling the Ma	It for Brewery		,		
3	Malt Crusher D							
4		Length	Width	Height			and the second se	
5	Dimensions:	600 mm	570 mm	1085 mm			1	
6	Weight:	150 kg					-	
7	Motor Power:	3000 W						the second se
8	Roller Type:	Double						40
9	Material:	Carbon Steel						
10	OPERATING CO							N
11		Min	Max					
12	Capacity:	150 kg/hr	300 kg/hr					
13 14	Power	1500 W					2	e
14		280 V						
15	Voltage MATERIAL PRO					10		
16	INIAI ERIAL PRO	PERILES						
17	Description:		Malt					
10	Description:		walt					
20	Moisture Conte	nt	Standard					
20	worstare conte	in.	Stantuaru					
22								
23								
24	N	0	Dł	TE	REV	ISION DESCRIPTION	BY	APVD
25	1 3			/2022		OR QUOTATION	MK	
26	1		01/01			an geometroit		
27								

Reference https://www.alibaba.com/product-detail/Malt-Crusher-TONSEN-Malt-Crusher-Grain 62442170950.html?spm=a2700.galleryofferlist.normal_offerd_title.5a6f5a0fPgVOMo&s=p

	UBC			DAT	A SHEE	ET - TANK	Tank Tag	Number
			UBC	Engineering	g Ltd - Ca	pstone Project Standard	V-1	00
PL	ANT: FBIC Microbrewery			P&ID Number			PROJECT No.	
Un	it Name: Hot Water Tank							
1	ISSUED FOR:		PROPOSAL		PURCHASE	AS BUILT		
2	SERVICE:	St	orage of Hot Wa	ter for use thr	roughout B	rewery		
3	OPERATING CONDIT	IONS						
4						ØK		
5			MAX NORM.	MIN.				
6	FLUID TEMPERATUR	E-C	100 70	25				
7							01	
8	MATERIAL PROPERT	TIES				51 II.		
9 10	MATERIAL DESCRIPT	TION: W	ator					
11	MATERIAL DESCRIPT		ater					
12	DESIGN FLUID DE	NSITY: 99	8 KG/M3					
13						I La HUI		
14								
15	TANK DETAILS							
16	INDOOR		OUTDOOR			TANK GEOMETRY -		
17						TANK POSITION:	Verti	cal
18	- DESIGN CONDITION	NS -				VOLUME - M3:	1	.84
19	MAX DESIGN TEM	MPERATURE	E-C	100		ASPECT RATIO (HEIGHT/DIAMETER	٤)	1.1
20	MIN DESIGN TEM	IPERATURE	- C	-10	_			
21	MAX DESIGN PRI	ESSURE - B	ARA	1.3	_	MATERIAL OF CONSTURCTION:	304 Fo	od Grade SS
22	MIN. DESIGN PRE	ESSURE - B	ARA	0.9				
24	NO. (DATE		RE	VISION DESC	CRIPTION	BY	APVD.
25	Feb	1 2022		Fo	or quotation	n purposes	SB	RP
26								
27								

Note for Appendix:

The design condition temperatures are determined using the material of construction. The vessel height and diameter are taken from specifications provided by one of the vessel supplier found online, that met the capacity requirements. (Portland Kettle Works)

Mash/Lauter Tun (V-101)

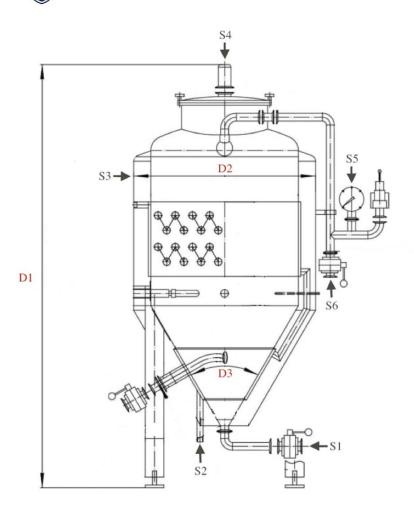
	UBC					'Lauter Tun e Project Standard		Ec	juipment Tag V-101
PLANT: FBIC N	MICROBREWERY					P&ID NUMBER		PRC	JECT NUMBER
	IASH/LAUTER TUN								
1	ISSUED FOR:		PROPOSAL			PURCHASE	AS		
2	and the second					RE CALLED WORT		BUILI	
3	SERVICE.	GRAINS ARE MIN		AN WATER, TO C	NEATE A MILATO				
10	OPERATING CONDITIONS					-	n ill	1	
10	of Eldinite compilions					-		- e	
-		ſ			7				
12	Temperature Inle	t	25	°C				-	
	_						111177	-	
13	Temperature Out	et .	70	°C	-			18	
14	Quantity		1548	kg/batch			A PRES	Million and	
		1			1		5		
15	Residence Time		60	min			The second	THE	
10	B			bar			A.C.	1	
16	Pressure	L	1	bar			Zu	4	
17						COLUMN AFAIT DETAILS			
18	MATERIAL PROPERTIES					EQUIPMENT DETAILS:			
19						1001701			
20	Input Material Content					LOCATION	V IND	ЮОК	OUTDOOR
21					1				—
22	Malt	Heat Ca		2	kJ/kg.K	JACKETED	VES		D NO
23		Den	sity	700	kg/m3	-			
24					1	SIZE	2 X 15	hL	
25	Water	Heat Ca		4	kJ/kg.K	_			
26		Den	sity	997	kg/m3				
27				1			1		
28	NO	DA				DESCRIPTION	BY		APVD
29	1	Feb 1,	2022		Initial	creation	AW		
30									
31									

Hops boiler/ Whirlpool (V-102)

UBC		DATA SHEET - I	BOILER/ WHIRLPOOL	Tank Tag	Number
۳)	UBC Engineering Ltd	- Capstone Project Standard	V-1	102
ANT FBIC Microbrev	very	P&ID Number		PROJECT No	
it Name: Hops Boil	er and Whirlpool Seperate	ar .		иł.	
ISSUED FOR:	PROPO	SAL PUR	CHASE AS BUILT		
SERVICE:	Boiling of	Wort and Separation of S	pent Hops		
OPERATING C	ONDITIONS		-	-	
MATERIAL DE	OPERTIES SCRIPTION: Wort (Mix	1.5 ture of Malt and Water)			
DESIGN FLU	Hops	A3	E E E	KETTLB	
VESSEL DET	ILS				
IND	DOR OUTDO	OR	VESSEL GEOMETRY - VESSEL POSITION: VOLUME - M3:	1	TICAL
	SN TEMPERATURE - C	800	VESSEL DIAMETER - M:	78	42
MIN DESIG	N TEMPERATURE - C	-190	VESSEL TAN/TAN LENGTH - M:	2	59
MAX DESIG	IN PRESSURE - BARA	4	MATERIAL OF CONSTURCTION:	304 food	-grade SS
	IN PRESSURE - BARA	0			
MIN. DESIG					
MIN. DESIC	DATE Feb 2, 2022		N DESCRIPTION ternal reference	BY SB	APVD.

Note for Appendix: The design condition temperatures are determined using the material of construction. The vessel height and diameter are taken from specifications provided by one of the vessel supplier found online, that met the capacity requirements. (Portland Kettle Works)

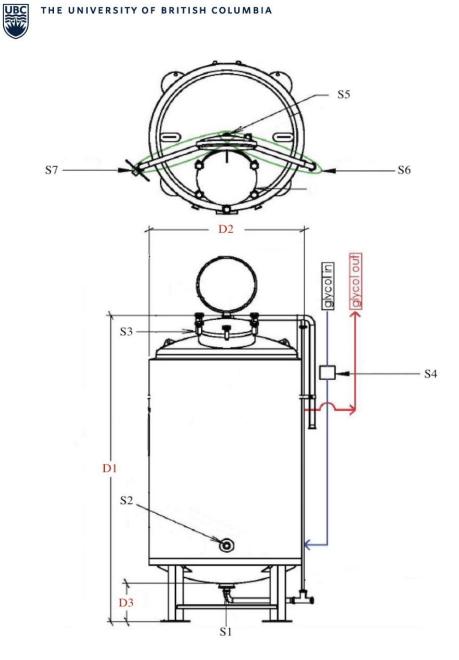
Heat Exchanger (E-100)


	UBC		DATA	SHEET - HE	EAT EXCHANGE	R	Excha	anger Tag	Number
		Ø	UBC Engi	E-100					
PL	ANT:	53.77	P8	ID Number 100			PROJE	CT No. P10	1
Ur	nit Name: E Heat	Exchanger							
1	ISSUED FOR:	Р	ROPOSAL	PURCH	ASE AS	BUILT			
2	SERVICE:	Wort							
3		CONDITIONS			FLUID PROPERTIES				
4									
5	Line An internet		HOT SIDE	COLD SIDE		WORT			
6		KG/BATCH	LIQUID 841	LIQUID 770	FLUID DESCRIPTION	IN	OUT	WATER	OUT
8			1.0	1	DENSITY - KG/M3	1040	1079	998	991
9	ALLOWABLE F	PRESS DROP - BAR	1.0	1.0	VISCOSITY - CP	0.44	0.67	0.889	0.333
10	FOULING RES	SISTANCE - M2 C / W	0.00015	0.00021	SPECIFIC HEAT - KJ/KG C	3.9	3.9	4.2	4.2
11	1		IN OUT	IN OUT	LATENT HEAT - KJ/KG	N/	A		N/A
12	11.04.01.00.20.04.04.00.04.00.0	RE - C	95 20	20 85					
13 14									
15					HEAT EXCHANGER DETA				
16				· ·	INDOOR	OUTDOO	3		
17			-		HEAT EXCHANGER TYPE	Plate Hea	t Exchange	er.	
18			and the second se						
19						HOT SIDE		COLD SI	
20			D3 02	MATER	RIAL OF CONSTRUCTION	Carbon Steel 3	16 L (Carbon Steel	316 L
21				DESIG	N TEMPERATURE - C	150		150	
22				DESIG	N PRESSURE - BARG	10		10	
24	NO.	DATE		REVISION DE	SCRIPTION		BY	/	APVD.
25		Feb 1 2022		For Specific	cation Sheet		TE	3	
26									
27									

The heat exchanger which is chosen for the brewery is researched online and the main component of that heat exchanger is carbon steel ////// https://www.cpesystems.com/produc

Fermentation Tank (R-100)

	Data Sheet -	- (Reactor, Fermentor)	Reactor Tag
	UBC Engineering	Ltd - Capstone Project Standard	R-101
Plant : Microb	rewery	P&ID Number 101	Project N: 10, P10
ermentor			
ISSUED FOR:	Proposal [x] Purc	hase As Built [x]	
SERVICE	Fermentation of Beer		
REACTOR TYPE			
			11
Туре	Batch Reactor		
	Yes		
Jacketed	Tes		
OPERATING CONDITIONS			
OFERAINS CONDITIONS			
	15 to 20° Celsius depending of	an the brew	
Temperature			
			~] *
Residence Time	2 to 8 weeks depending on des	ared beer type	
MATERIAL PROPERTIES			
Initial Liquid Content: %100WT We	ort	Final Content	
and the second second second		Description: %98WT Beer, %2WT (01
Density: 1040 kg/m ³			
Initial Solid Content: %100WT year	st	Density: 1060 kg/m ³	
Density: 1095 kg/m ³			
Reactor Details			
INDOOR	OUTDOOR		
Design Conditions		Reactor Geometry	
	40° Celsius	Reactor Volume	
Maximum Design Temperature	40 Celsius	Reactor volume	1200 Liters
	0° Celsius	Reactor Outside Diamet	er
Minimum Design Temperature			1.1 meters
	3 atm	Conical Angle	
Maximum Design Pressure	41 2020 8		60*
Minimum Design Pressure	0 atm	Reactor Height	2.438 meters
winimum Design Pressure			2.458 meters



D1	2.438 meters
D2	1.1 meters
D3	60 degrees
Part	Description
S1	Drain
S2	Glycol water inlet
S3	Glycol water outle
S4	Safe valve
S5	Pressure Gauge
S6	CIP inlet

Bright Tank (V-103)

	UBC			DATA SHE	ET - TANK	Tank Tag	Number
			UBC	Engineering Ltd - C	apstone Project Standard	V-1	03
PL	ANT: FBIC Microbrev	wery		P&ID Number		PROJECT No.	
Ur	nit Name: Bright Tan	nk					
1	ISSUED FOR:		PROPOSAL	PURCHAS	SE AS BUILT		
2	SERVICE:	St	orage of final be	er product	and is seen to be all the set of the set		
3		ONDITIONS					
4 5 6 7			MAX NORM. 25 10	MIN.			
8	MATERIAL PR	OPERTIES					
9 10	1850 CONTRACTOR 189	SCRIPTION: Fi	nal Beer Produc	t		10 m	
11 12 13 14		UID DENSITY; 10	60 KG/M3		Ē	1	
15	TANK DETAIL	.s					
16	IND	DOOR	OUTDOOR		TANK GEOMETRY -		
17					TANK POSITION:	Verti	cal
18	- DESIGN CON	NDITIONS -			VOLUME - M3:		1.7
19	MAX DESI	GN TEMPERATUR	E-C	800	ASPECT RATIO (HEIGHT/DIAMETER)	2.7
20	MIN DESIG	GN TEMPERATURE	- C	-190			
21	MAX DESI	GN PRESSURE - B	ARA	4	MATERIAL OF CONSTURCTION:	304 Fo	od Grade SS
22	MIN. DESI	GN PRESSURE - B	ARA	0			7
24	NO.	DATE		REVISION DE	SCRIPTION	BY	APVD.
25		Feb 1 2022		For quotation	on purposes	SB	RP
26							
27			T 1 1 1				·
	ote for Appen	aix:	vessel height	t and diameter are t	es are determined using the mate aken from specifications provided ne capacity requirements. (Portlan	by one of the	vessel

D1	93 Inches
D2	10 Inches
D3	44 Inches
Dort	Description
Part	Description
S1	Ultimate drain
51	Ultimate drain
S2	TC port
S2	TC port
S2 S3	TC port Manway
S2 S3 S4	TC port Manway Valve
S2 S3 S4 S5	TC port Manway Valve CIP inlet

Centrifugal Pump (P-100)

	UBC			DAT	A SHEET-	Pump P-100		Pump Tag	g Number
			P-10 - Caps	tone Pro	oject - FBIC E	Prewery design and o	ptimization	P-1	100
Un	^{it Name} Centrifugal Purr	пр							
1	ISSUED FOR:		PROPOSAL		PURCHASE	E AS B	UILT		
2	SERVICE:	Wa	ater Effluent Pu	mp					
3	OPERATING CONDITION	S				FLUID PROPERTIES			
4		MAX				FLUID DESCRIPTION:	-	th traces of malt	
L .	VOLTAGE :	460	230	-	v			DRMAL MIN.	1 10
	Maximum Flow NPSH AVAILABLE:	4	_		L/s M	PUMPING TEMP.: SPECIFIC GRAVITY:	75 1.055 1	70 60 1.022 0.99	°C
	HORSEPOWER:	1	-		HP	PRESSURE:		101 103	kPa-a
9	Horoer offere					VISCOSITY:		0.91 1.31	cP
10]
11									
12	PUMP DETAILS							-	
13	INDOOR	-	OUTDOOR						
14	PUMP TYPE:	Centrif	ugal Style Pump		-				
15 16	ELECTRICAL CLASSI	FICATIO	N.						
17	CL.:			DIV.:					
18	NON HAZARD						1-14	I	
19								AGA	
20	MATERIAL OF CONS	RUCTIO	ON: Stainless Ste	el			200		
21									
22	SPECIAL REMARKS:		None						
24	DATE		REVISION	DESCRITP	TION				
25	FEB 1 2	2022		I	FOR QUOTATIC	N PURPOSES			
26									
27									

Note for Appendix: The design condition temperatures are determined using the material of construction. The pump operating condition range are taken from specifications provided by one of the vessel supplier found online, that met the capacity requirements.

APPENDIX D: HAZOP

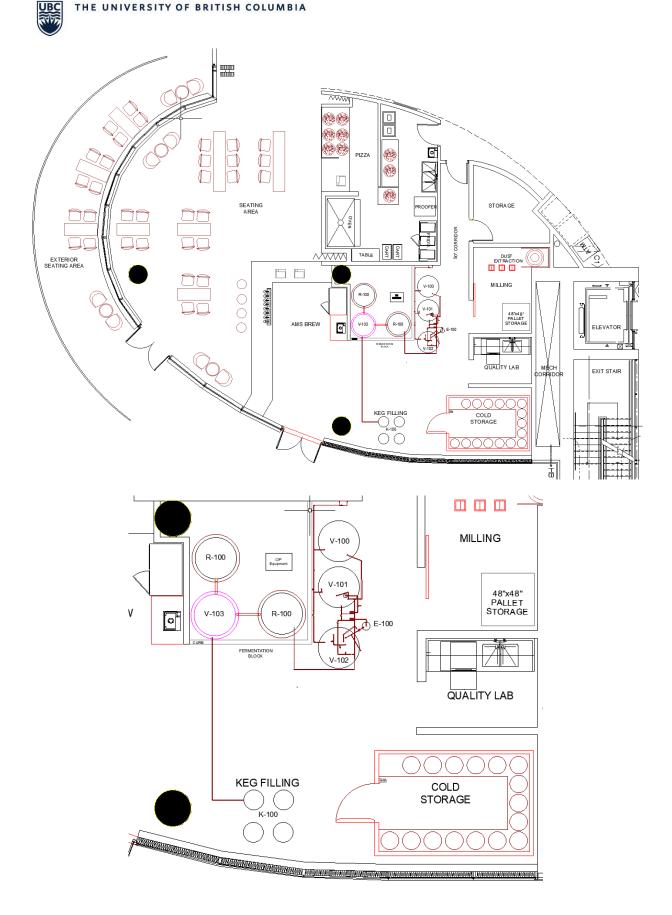
RISK MATRIX

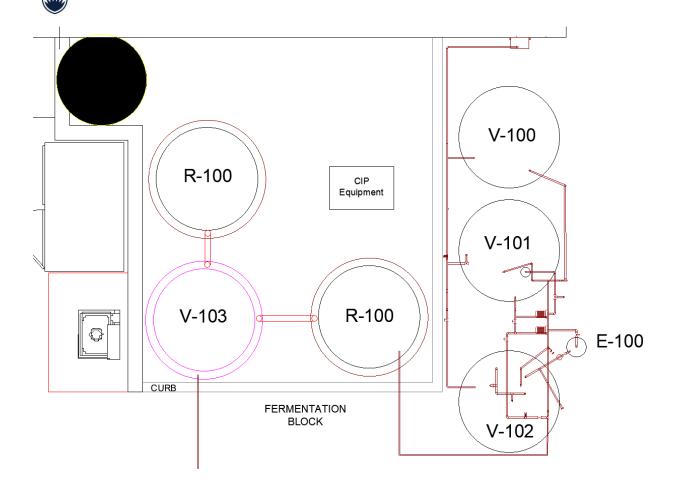
UBC

			F	REQUEN	CY	
		Frequent – expected to occur	Probable – likely to occur in the next 5 yrs	Occasional – may occur within the life of facility	Rare – not anticipated to occur	Improbable
Consequence		1	2	3	4	5
Severe injury,Major Env. Damage,1 million \$ +	1	н	н	S	М	L
Lost time accident, , Reportable Env. Event,\$100k- \$1Million	2	н	s	м	м	L
Medical treatment, \$10k - \$100k	3	S	м	м	L	L
Minor exposure, Onsite release, \$1-\$10k	4	м	М	L	L	L
localized spill, <\$1k	5	М	L	L	L	L

The severity of the consequences has been modified within the scope of the project.

This analysis was done on the whole process as a single node.


	PHA Worksh	neet										
Node		Node 1: Whole Process		2								
Reference Documents				-								
		DESIGN INTENT: To produce bee	a]	
Design Intent Conditions / Parameters:		OPERATING CONDITIONS: The hot side of the microbrewery (Mash/Lauter tun, Hops Boiler and Whirlpool, Hot water tank) operates at a temperature range of 70-100 degC, while the cold side of the microbrewery (Fermenter, Bright tank, Keg-filling station) operates at a temperature range of 4-25 degC. <u>PROCESS CONTROL</u> : The temperature of the fermenter (R-100) and bright tank (V-103) are set by their respective controllers through a simple feedback loop. The controllers manipulate the flow of the glycol through the tanks' respective cooling jackets. <u>HUMAN INTERACTION</u> : There is no preventative maintenance required. The column is inpsected through the regular annual plant maintenance shutdowns. Final quality assurance is required to maintain an acceptable final product. <u>SAFE LIMITS</u> : The Fermenter (R-100) can operate between 10 degC and 20 degC without process upsets. <u>DESIGN CONDITIONS</u> : All equipment operates at 1 to 3 atm. The temperature varies for different equipment between 4 degC to 100 degC. SAFETY DEVICES: There are only temperature controllers in the process.										
	Cause (Errors, Failures)	SAFETY DEVICES: There are only Consequence (without	Befor		ontrollers in the process.		er Safegua					
Deviation		safeguards or operators)	Safegu Categ S ory i	iever	Existing Safeguards (On P&ID or in place at facility)	Category	Freq.	Risk Rank	Recommendations / Comments	Responsibility	Final Recommendation / Soluti	
		Leaks from equipment	H&S	-	Locks on pipe ends	H&S	5	Narik	Extra seal to be added to the pipes that would lock in to		Extra seal all the pipes	
			FIN	4	Locks on pipe ends	FIN	5		prevent any leaks			
			REP			REP		L				
			ENV			ENV		1			2	
	Pump(s) are not connected properly Cleaning required	Loss of beer	H&S	5	5 Isolated pipes	H&S	5		All the pipes from each equipment should be able to be	Isolate the pipes		
No/Less Flow			FIN	5	Drain valves	FIN	5	L	isolated so that the loss of beer can be minimized			
			REP			REP						
		Cleaning required	ENV H&S	5	5 The cleaning equipment required for the beer 5	ENV H&S FIN REP	5	s	Any leakage will require some cleaning and certain		Install drainage	
		Cleaning required	FIN	5			5	1.	drainage which should be build in to the plant area.			
			REP					1				
		The terror of the	ENV	-	The sum of the standard and terrors to a los	ENV			If the terms of souther more about 20 descent		Out the test of second as inte	
	Glycol is not pumped as much as it should be	The temperature of the fermenter increases	H&S	4	Thermometer attached and temperature log	H&S	5	-	If the temperature of reactor goes above 20 degree celcius for a prolonged time then the batch shoud be		Quality test at several points	
	Given is not pumped as much as it should be				Temperature controller Quality Control test (including taste test)	FIN	5	L	quality tested at several points to determine it's quality.			
		-	REP ENV	5	county control test (inclosing taste test)	ENV	5	2	Depending on the quality test results unfit amounts			
	E-100 malfunctioning	The temperature of the bright	H&S	-	Thermometer and temperature log attached	H&S	5	<u> </u>	should be disposed of. This would effect the quality of the beer however if this		Quality test every batch	
		tank increases	FIN	-	Temperature controller	FIN	5	1	beer is not sold then reputation would be okay so every			
		-	REP		Quality control	REP	5	L	batch of beer should be test tasted before it can be			
	Boiler burner set too high/malfunctioning		ENV			ENV		t	solved.			
		Milling machine shuts down	H&S	2	Have fire extinguisher	H&S	5		The dry grains should not be stored right next to milling		Isolate the dry grains storage	
		causing fire	FIN	2	Fire Alarm on site	FIN	5	t .	machine so that no spark can reach to the storage to			
High Temperature	Milling machine overheats		REP	3		REP	5	1	ignite everything			
			ENV	4		ENV	5				-	
		Grain/dust spillage causing	H&S	4	HVAC system	H&S	4		Milling system should be check with smaller amounts		Sample test the milling process	
	Auger Clogs	breathing hazard	FIN		PPE	FIN		L.	before the whole batch is milled to be able to control this issue if it were to happen			
			REP		Milling system	REP			and the second se			
			ENV	4		ENV	4					
		Hops Boiler increased to a temperature higher than	H&S	5	Thermometer and temperature log attached	H&S	5		The flavor of the beer might be affected due to excess heat applied to the hops during this process and some		Quality control testing every batch	
		intended	FIN	5	Burner control included	FIN	5	L	water might also evaporate.			
	Chiller not working		REP			REP						


			ENV			ENV						
Lower Temperature	Chiller is providing more cooling than it should	The beer might not be fermented	H&S	5	Thermometer and temperature log attached	H&S	5		Taste of the beer might be affected since sugars won't	-1	Quality control testing every batch	
		properly	FIN		Quality Control Testing	FIN	5		fully be converted by yeast to alcohol , hence malted			
			REP			REP	S	<u> </u>	barley won't be fully used.			
			ENV	_		ENV				-		
		The bright tank might be cooled	H&S		Thermometer and temperature log attached		S					
		off than it should	FIN	-	Quality Control Testing	FIN	5					
				REP			REP	5	-			
	Hops Boiler is not being heated to the		ENV	_		ENV						
	temperature it should	Hops are not solving properly	H&S			H&S						
			FIN			FIN						
			REP	5	Quality Control Testing	REP	5					
			ENV			ENV						
		The floor being flooded and the	H&S	3	The curb drainage system is set to drain the	H&S	5		This consequence is very unlikely to happen as a massive		Inspect the drainage system freque	
		brewery is above the electrical	FIN	1	The layout of the brewery will be designed	FIN	5		rupture and blocked drainage system would have to			
		room of the building	REP	-	Quality Control of Drainage system with water	REP	5	L	happen at the same time while there are no operators			
			ENV	4	Quality Control of Grainage system with water	ENV	5		close by. However it is also the costliest failure which			
Leak/Rupture	Failure of drain valves		_	_			2		can happen.	-		
			H&S			H&S						
		The batch is completely lost	FIN	3	Same as above	FIN	5	L			1	
		The second completely has	REP	-		REP						
			ENV			ENV						
		1	H&S			H&S				×		
	Pump is connected incorrectly Batch contamination		FIN	3	Clear labels should be placed on piping	FIN	5	E.				
			REP	-		REP						
	Ordination of class consisted in second	Batch and a standard and	ENV H&S			ENV						
CONTRACTOR DECKS 200 CONTRACTOR	Redirection of pipes connected incorrectly	Batch contamination	FIN	3	Same as above	H&S FIN	5	+				
Aisdirected/Reverse Flow				REP	3	same as above	REP		L	L		
			ENV	-		ENV						
	Pump failure	Batch contamination	H&S			H&S		<u> </u>	This is unlikely to happen, given regular pump and valve		Frequent inspection and maintenan	
	Pump tailure Batch contam	Batch contamination	FIN	-	Regular pump maintenance is required, install	FIN	4		maintenance. Additionally, having a backup pump can		pumping system	
			REP	-	and party restriction of the second second	REP		L	also reduce the likelihood of this happening			
				ENV			ENV		t			
Higher Pressure	Not applicable for this project higher pressure is		H&S	-		H&S				2		
	not reached during the process		FIN			FIN						
	8.0		REP			REP						
			ENV			ENV					2	
Lower Pressure	Not applicable to this process	1	H&S			H&S						
			FIN			FIN						
			REP			REP						
		6	ENV			ENV				6		
	The only way this can be an issue if there was an		H&S	-		H&S						
	error made by the operator		FIN	<u> </u>		FIN						
			REP	-		REP						
		6	ENV			ENV						
Lower Level	-		H&S	-		H&S						
	The only way this can be an issue if there was an error made by the operator		FIN	-		FIN						
	error made by the operator		ENV	-		REP	-					
Hone Composition	Not applicable to this process		H&S			H&S						
trong composition	not applicable to this process		FIN	-		FIN					1	
			REP	-		REP					1	
			ENV	-		ENV					1	
Wrong Reaction	Not applicable to this process		HAS	_	2	H&S				0		
	and the second se		FIN	1		FIN					1	
			REP			REP					1	
			ENV	t		ENV					1	
	Grains not crushed properly	Wort out of spec disposed	H&S	_		H&S						
Vrong Concentration											-	
Vrong Concentration	dians not crushed property	more out of spece objected	FIN		Quality control testing	FIN	5	-				

		1	Concession 1					т	1	č.	7
			ENV			ENV		<u> </u>			
	Excess amount of water is added during the	Beer out of spec sold	H&S			H&S		Į.			
	lautering process		FIN			FIN		1			
	0.53		REP	3	Quality control testing	REP	5	-			
			ENV			ENV				8	
			H&S			H&S				0	
Complian Manada	There are no process errors associated with this		FIN			FIN	_	I			
Sampling Hazards	type of hazards only user made ones		REP			REP		Ι			
			ENV			ENV		1			
Aaintenance Hazards	There are no process errors associated with this		H&S			H&S					
	type of hazards only user made ones		FIN			FIN		1			
	CONTRACTOR		REP			REP		t			
			ENV			ENV		t			
Startup/Shutdown	Not applicable to this process		H&S			H&S					
Hazards			FIN			FIN		1			
			REP			REP		t			
			ENV			ENV		t I			
Workplace Safety	High humidity prodcued by process	Slippery floors	H&S	3	Ventilation system	H&S	3		The brewing process produces a lot of humidity which		Install dehumidifiers
Hazards			FIN		PPE	FIN		м	can condense on floors and can cause a slipping hazard.		
			REP			REP		· · · ·	Frequency of this can be decreased by air circulation.		
			ENV			ENV			Wet signs		
Flooding	Drainage system is clogged / full	Leaks and spillage accumulate,	H&S		The curb drainage system is set to drain the	H&S	5				
	 Participant de Phase de la Constante de la Constante Constante de la Constante de	brewery is above the electrical	FIN	1	The layout of the brewery will be designed	FIN	5	Ι.			
		room of the building	REP	2	Quality Control of Drainage system with water	REP	5				
			ENV	4		ENV	5		_		
CIP Hazards	Exposure to CIP chemicals (caustic / acid)	Exposure to caustic /acid can	H&S	3	PPE	H&S	5	1			
		cause health issues	FIN			FIN		1			
			REP			REP					
			ENV			ENV					
	CIP chemical residue remains after cleaning	Can be caused by improper	H&S	1	Proper brewery CIP practices should be upheld,	H&S	5	Į.	It is unlikely for improper rinsing to be done during CIP,		Avoid dead-leg pipes in design process
		rinsing, dead-leg pipes	FIN	3		FIN	5	1	however piping should be designed with attention to		
			REP	1		REP	5		detail.		
			ENV	4		ENV	5				

APPENDIX E: PLANT LAYOUT

THE UNIVERSITY OF BRITISH COLUMBIA

APPENDIX F: ECONOMIC ANALYSIS

RAW MATERIALS

Description	Amount (kg)	Cost (CAD)	
Yeast per kg	1	\$3.02	
Yeast per batch	10	\$30.20	
Yeast per month	40	\$120.80	
Yeast per year	480	\$1449.6	
Hops per kg	1	\$22	
Hops per month	5	\$110	
Hops per batch	20	\$440	
Hops per year	240	\$5280	
Malt per kg	1	\$0.31	
Malt per batch	285	\$89.49	
Malt per month	1140	\$357.96	
Malt per year	13680	\$4,295.52	
Total per batch		\$229.69	
Total per month		\$918.76	
Total per year		\$11,025.12	

Utilities

	Monthly Usage	Utility Costs (\$)
Electrical (kW/hr)	1193	\$145.60
Natural Gas (GJ)	13.64	\$177.50
Water (L)	32000	\$119.80
Total Monthly Cost		\$443.00
Total Annual Cost		\$5314.00

https://www.movingwaldo.com/daily-living/bc-utility-bills-how-much-does-utilities-cost/

Labor

			Total Annual Salary	
Worker Title	No. of Workers	Pay \$/hr	(125%)	
Full-time Brewmaster	1	25	\$60937.50	
Part-time Brewmaster	1	16	\$20800.00	
Total	2		\$81738.00	

Revenue

	Beer			
	Produced (L)	Beer Sold (L)	SP (\$/L)	Revenue (\$)
Per Batch	1000	950	8	\$7600.00
Monthly	4000	3800	8	\$30400.00
Annual	48000	45600	8	\$364800.00

Group member contributions

Group Member Name	Contributions
Ali Wasti	Stream Table, Mass balance, Energy Balance, Equipment List, Economic Analysis, Start-Up/Shutdown Procedure, Recommendations, Appendix A
Haluk Kaan Kartal	Process Synthesis, Data Assembly, Equipment List, Environmental Analysis, Start-Up/Shutdown Procedure, Recommendations, Conclusion, Appendix B
Hassan Sinno	Introduction, PFD description, Executive Summary
Sarmad Ali	Process Synthesis, PFD, P&ID, Executive Summary, Start-Up/Shutdown Procedure, Economic Analysis, Appendix A
Tamer Baroud	Introduction, Market Analysis, Block Flow Diagram, Plant Layout, Appendix C, Appendix E, Appendix F
Vito Abednego	Process Synthesis, PFD, P&ID, Control Loops and Narrative, HAZOP Analysis, CIP Procedure, Appendix D
Michael Kosgei	HAZOP Analysis