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Abstract

The UBC AMS is a large community that offers a variety of services to UBC students
and employees. While it caters for the whole campus, a huge amount of carbon emissions are
also generated in the supply chain. We are concerned about this because greenhouse gasses
may have an influence on climate changes and the environment. Among all the stages in the
supply chain, agricultural production is the one that has been found to be the major source of
emissions. Hence, to help AMS build a eco-friendlier supply chain, we consider replacing
products that are high in agricultural emissions by their alternatives. To do so, we conducted
an audit on AMS’ products and calculated their total carbon footprints. We then regressed the
total carbon footprints on food types, controlling for distances, weights, and packaging
materials. This would allow us to estimate the agricultural impact of each product. Based on
the results, we found coffee and dairy are two types that have high agricultural emissions.
Consequently, we recommended replacing those by tea and vegan milk, respectively.
Moreover, we have also proposed a supplementary plan to further reduce the emission, that
is, replacing white chocolate with dark chocolate. For each of the three pairs mentioned
above, we stimulated the reductions in overall emissions when substituting different
proportions of the high-emission types (i.e. 15%, 20%, and 25% for coffee and dairy; 30%,
40%, 50% for white chocolate), so that AMS can choose the plan that best suits their needs.
Although there are still some limitations such as insufficient data and omitted variables, our
findings are robust to different assumptions and specifications. We hope that while AMS is
balancing between the demand and supply of their foods, our research can shed some light on
possible ways to lower their emissions.

1. Introduction

1.1 Context and Motivations

Environmental protection has always been a crucial issue that draws wide social
attention. According to the research conducted by Susan Solomon (2009), the increasing
carbon emissions have caused several irreversible climate changes including atmospheric
warming, precipitation changes, and sea-level rise. The carbon emissions associated with
agricultural production are causing a lot of concern. Consequently, with the notice of
environmental changes, the consumers begin to make changes in their choice of products and
consumption afterward (Migliore, 2021). Therefore, the research area of this project focuses
on green economics, which aims at sustainable development without degrading the
environment.

In 2021, AMS has announced an ambitious program of achieving net zero carbon
emissions by the year of 2025 (Vallenas et al., 2021). As a leading community who always
strives for sustainability, it has also been putting tremendous efforts to cut its carbon
emissions. In order to provide insights for AMS to achieve its goal of zero carbon emissions,
we have been researching for possible recommendations to help lower their carbon emissions
generated in the supply chain.
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As reported by Hannah Ritchie and Max Rose (2020), admittedly, the distance of
transportation impacts the footprints, but only to a mild degree. In fact, most of the carbon
footprints come from agricultural production stages such as land-use changing, farming, and
animal feeding. Therefore, the essential factor for reducing carbon emission would center
around the choices of foods instead of the travel distances. Based on this research finding, we
believe that substituting products with massive agricultural emissions would be an effective
way of  building a supply chain that is more environmentally-friendly.

After reading through some existing research, we have decided to pay specific
attention to food categories including meat, vegetable, dairy, beverages and other
intermediate products since they are found to have particularly high carbon emissions.
According to Nijdam et al. (2012), for the category of meat, the carbon footprint of the most
climate-friendly protein sources is up to a hundred times smaller than those of the most
climate-unfriendly products. For vegetables, as discovered by Stoessel (2012), asparagus,
lettuce, and cucumber appear to have relatively high agricultural carbon emissions, which
inspires us to look for possible alternatives. Furthermore, based on the research conducted by
Konstants (2018), for the intermediate products such as chocolate, the land-use change
associated with its production has been found to have an impact of  increasing total global
warming potential by three to four times. This also draws our attention, and we hope that we
are able to find feasible substitution plans that help alleviate such pressures on environmental
issues.

Based on the secondary research that we collected, we believe that re-structuring the
choices of foods would be a practical and convincing approach to improve the sustainability
of AMS’ supply chain. In particular, we are going to use agricultural carbon emission as a
benchmark to identify products that need to be replaced and their alternatives. Aiming at
improving the sustainability of AMS’ supply chain and ultimately moving closer to a greener
lifestyle, we hope that our project can bring a more positive impact to both AMS and UBC.

1.2 Research Questions

This project primarily focuses on the research topic of “how to reduce the carbon
footprints of AMS’ supply chain by replacing products that are high in agricultural emissions
with their alternatives?”  Therefore, in order to identify products to be substituted, we are
interested in finding close estimates for each product’s agricultural impacts. In particular, our
project will be completed in four stages.

The first stage is to conduct secondary research to recover the total carbon footprints
of each product provided by AMS. We will then divide the products into broad types, such as
meat, vegetables, dairy, and so on. Estimating each type’s agricultural emissions is the second
step. In this stage, we will try out several regression models by adding different controls and
determining the best model for explaining our data. The next step is to determine which
goods have high emissions during agricultural production, and those products are the ones to
be substituted. Finally, we will implement multiple substitution plans that allow different
fractions of high-emission products to be replaced by lower-emission alternatives. The
resulting reductions in total supply chain emission will be simulated, which enables us to
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compare the effectiveness of different plans. We believe the aforementioned four steps will
guide us through the project, helping provide practical recommendations for AMS Nest to
meet their sustainability objective.

1.3 Method

Our outcome variable is the total emissions of each of the products provided by AMS.
It is calculated via 𝑡𝑜𝑡𝑎𝑙𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =  𝑡𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑝𝑒𝑟_𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚
(Equation(2)). The total weights are obtained directly from AMS; the per-kg emissions are
the amount of carbon emissions released in the entire supply chain (including stages like
agricultural production, processing, packaging, transportation, and retail), and they are
obtained from previous research findings and other secondary sources (Poore, N., 2018; Our
World in Data.,nd; Marié, À., 2022; Winans et al., 2019; Migdon, 2021). Prior to the
implementation of the models, some necessary processing of the raw data was carried out,
such as categorizing products into more general types and ensuring uniform scale of variable
measurement.

To isolate the agricultural impact from the total emissions, we divide products into
different types, and as a baseline model, we regress total emissions on those food types
controlling for weights. Because transportation and packaging are also two tangible factors
that are influential for total supply chain emissions (Our World in Data, 2022), in order to
eliminate their confounding effects, they have also been subsequently added into the baseline
model. Next, an exhaustive search algorithm (regsubsets) is applied in R, which would allow
us to filter out variables that are “important” in the sense that they explain most of the
variance in the total emissions. Thus, the resulting model serves as a confirmation that helps
us better identify products with extensive agricultural emissions.

By establishing these simple regressions, we have made three major assumptions.
First, we assume the total emissions are generated with normally distributed errors. Second,
the errors have a constant variance, that is, they are homoscedastic. Third, the per-kg
emissions are the same across all food types. We realize that these assumptions do not
necessarily hold. Therefore, tests and diagnostic plots have been produced to check for the
first two assumptions, and interaction terms have been added to check for the third one.

1.4 Empirical Challenges (Limitations)

While we develop the models, several issues are found. One of the issues we faced was
the availability of data. For many of the products in the dataset, there is no information on
how they were delivered (was it by plane, ship, or truck?), their places of origin, and the
packaging materials. In order to control for the impact of transportation and packaging, we
have to come up with hypothetical values for these attributes. More seriously, some food
types only have a few records, which imposes large variances when fitting the regression
lines.

Our second hurdle was the presence of potential omitted variable bias. Some
contributors of the supply chain emissions, such as retail, processing, and food wastes are not
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included in our model. As a result, it is possible that the accuracy of our estimations will be
influenced.

Thirdly, because we do not have data on students’ demand, what we recommend may
not necessarily meet the actual desires of AMS’ products. To best address this issue, we
propose multiple replacement plans with different fractions of high-emission products
replaced, and we hope AMS can find the optimum one that is most applicable to their market
conditions.

1.5 Key Results and Paper Structure

After fitting a series of regression models, we identify three products that are
relatively high in agricultural emissions – coffee, dairy, and chocolate. According to the
output of our candidate model Best Subset, the respective agricultural impacts of coffee,
dairy and chocolate in their total emissions are 46780, 30413, and 25121 kg higher than that
of the reference food type (chicken).

Admittedly, due to the limited sample size and the existence of omitted variables, the
accuracy of the results may be potentially affected; and the market demand is not taken into
account when proposing substitution plans. However, our findings are robust to different
assumptions and specifications. There are two verifiable assumptions raised when we have
done the robustness check, which include homoscedastic and normally distributed errors. To
examine if the data has homoscedastic errors, both visual inspection and the Breusch-pagan
test have been conducted, and the results suggest the validity of this assumption holds.
Furthermore, a quantile-quantile plot has been applied to check the distribution of the error.
The patterns in the plot are not consistent with a normal distribution, which would be one of
the limitations that exist in our model, nonetheless this hypothesis is still appealing for any
further analysis in the paper. Lastly, to relax the assumption of uniform per-kg emission in the
basic regressions, interaction terms have been added. Based on the extended models,
chocolate, coffee, and dairy that are identified for replacements still remain high in their
estimated agricultural emission. Therefore, the credibility of our results has been guaranteed
due to the robustness under different hypotheses and alternative specifications.

Based on the results, we provide three practical recommendations for AMS’ supply
chain, including replacing coffee with tea, dairy with vegan milk, and lastly white chocolate
with dark chocolate as the supplementary recommendation. Under each recommendation, we
consider different proportions of the products to be substituted. For white chocolate, it would
be 30%, 40%, and 50% replacements; for dairy and coffee, it would be 15%, 20%, and 25%
replacement. In particular, by replacing 50% white chocolate with dark chocolate, we could
achieve 2.47% reduction of the total chocolate emissions. Similarly, with 25% replacement of
coffee, an amount of 8933.28 kgCO2eq emissions can be effectively reduced; with 25%
replacement of dairy, the emission reductions are up to 28083.08 kgCO2eq.

The remainder of this paper is organized according to the following structure. The
Background Section (section 2) reviews relevant literature, which provides the context of our
topic. The Data Section focuses primarily on the data source (section 3.1), data
transformation (section 3.2), and the detailed description of our data (section 3.3). In the
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Methodology Section, we mainly explain the basic models we used in this paper (section 4.2)
and give a closer look at the selection of best models (section 4.3) as well as the inclusion of
interactions (section 4.4). The Result Section (section 5) presents the results we have
obtained based on the models and the replaceable products found. The Discussion Section
includes the robustness check and alternative specification (section 6.1); on top of that, the
recommendation (section 6.2), economic meaning (section 6.3), and limitations (section 6.4)
are also addressed. Lastly, the Conclusion Section (section 7) will provide an overall
summary of the key findings throughout the text and provide some additional suggestions.

2.Background

2.1 Context

During the 20th century, the concentration of greenhouse gasses in the atmosphere
increased as a result of human activity. Humans are the main cause of changes in the
composition of the Earth's atmosphere and therefore the driving force behind future climate
change. The severity of damaging human-induced climate change depends not only on the
magnitude of the change but also on the likelihood of irreversibility. Paper written by
Solomen, Plattner, Knutti, and Friedlingstein (2018) has shown that climate change due to
increased CO2 concentrations is essentially irreversible within one thousand years of the
cessation of emissions. These rising carbon emissions are undoubtedly staggering, and of
these, food emissions are responsible for more than a quarter of global greenhouse gas
emissions according to the data presented in Konstantas’ research (Konstantas et al., 2018).
With the growing awareness of environmental protection people have, what would be the
most effective way of reducing carbon emissions is an issue worth considering. Eating local
food would be the most misleading piece of advice since greenhouse gas emissions from
transport account for only a small proportion of emissions from food. In the study data, we
can see that livestock and fisheries account for 31% of food emissions, crop production for
27%, land use for 24%, and the supply chain for 18%. Hence, choosing relatively low food
choices could have a significant impact on carbon reduction. In addition, not just as an
objective stated by United Nations Framework Convention on Climate Change (UNFCCC) is
to stabilize greenhouse gas concentrations in the atmosphere at levels low enough to prevent
'dangerous anthropogenic interference with the climate system' (Solomon et al., 2009), the
environmental protection and the healthy food selection use has also raised strong concern for
consumers in everyday life. As a result, not only are consumers trying to determine the
greenhouse gas emissions generated by various consumption categories to choose their
preferred food category, but businesses are also trying to find new options for
decarbonization to create a more sustainable food supply chain (Migliore, 2021). This paper
will therefore be set in the context of the pursuit of sustainability and minimization of carbon
emissions in university education institutions of UBC. Moever, AMS, the most dominant
student-run institution in control, has made a corresponding claim, namely the ambition to
achieve a net zero-carbon emissions plan for the campus by 2025 (Vallenas et al., 2021). In
AMS Sustainable Action Plan (ASAP), AMS has also demonstrated its commitment to

5



Policy Recommendations of Carbon Footprints Reduction

redefining the meaning of sustainability and integrating it into the priorities of the three core
pillars of the mainstream sustainability strategy: environmental, social, and economic
sustainability.

2.2 Related Literature
  

Before any reduction in carbon emissions in the AMS supply chain can be
implemented, there is one further step that is needed - an audit of the products on the AMS
product list to determine the total carbon footprint of each product. In this paper, the carbon
emissions are identified in a slightly different way in the secondary source investigated for
different products, including but not limited to meat, vegetables, dairy products, etc.
However, one of the most popular methods, and the one used to measure carbon emissions
for the majority of products in this paper, is Life Cycle Analysis (LCA). LCA, also known as
life-cycle assessment, is a primary tool used to support decision-making for sustainable
development, which quantifies the environmental impacts associated with a given product
(Hill, 2013). The LCA process consists of four components: goal definition and scoping,
inventory analysis, impact assessment, and interpretation (Brusseau, 2019). At each step of
the way, LCA identifies the key materials and processes that are likely to have the greatest
impact on the product's life cycle, including resource requirements and human health
impacts. These assessments describe the full benefits and costs of a product or process,
enabling decision-makers to select the most effective solution. LCA measures the full range
of a product at a specific scale over a long period, which gives credibility to the result of data,
but as Ayres (1995) mentioned in his article, the data required to accomplish this very first
step are often not available from published sources. Therefore, the theoretical description of
the process from published sources may not be consistent with actual practice, and this
cannot be verified. However, despite this limitation, LCA is still a comprehensive method for
assessing all direct and indirect environmental impacts across the full life cycle of a product
system (Brusseau, 2019).

3. Data

3.1 Data Sources

Our dataset contains 39 observations and 11 variables. The types of all the variables
are summarized below (Table 1).

Table 1. All variables in the dataset

Variable Name Data Type

type categorical (13 levels)

product categorical (25 levels)

kg_per_case numerical, non-negative real numbers
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cases numerical, non-negative integers

emission_per_kg numerical, non-negative real numbers

packaging categorical (3 levels)

origin categorical (6 levels)

dist_ship numerical, non-negative real numbers

dist_truck numerical, non-negative real numbers

total_weight numerical, non-negative real numbers

total_emission numerical, non-negative real numbers

The list of products together with the quantities purchased are provided by the Nest.
The per-unit carbon footprints of each product were obtained from websites including: Our
World in Data (the main source), CO2 everything (oak milk), HEALable (tea), theHill
(avocado), swns digitals (butter), Novidon Sustainable starch solutions (starch), and research
papers from Springer (almond milk) (Poore, N., 2018; Our World in Data, 2022; Marie, A.,
2022; Winans et al., 2019; Migdon, 2021).

To account for the emissions during transportation, distances between the origins of
the products and the Nest were computed. Each product has a travel distance that consists of
two parts, the ship distances and truck distances. The ship distances were obtained from
Ports.com and truck distances were looked up on Google Maps. It is worth noting that
because the detailed information of most products is not available, the places of origin were
derived based on common sense.

To control for the emissions during packaging, a categorical variable “packaging” was
added to indicate the wrapping materials of the products. Again, this information is also
hypothetical due to our limited access to the products.

3.2  Data Transformations

The products have been classified into broader types. For each type in the original
dataset, we have tried to search for its overall carbon emissions across the entire supply
chain. However, such information is not available for all types. Therefore, products with
missing weights and unknown per-unit carbon footprints have been omitted from our
modified dataset.

Because carbon footprints are commonly measured per kilogram of food, for each
product, we first converted the per-case weight into kg. In particular, the vegan milk comes in
a pack of 12 1L cartons. This was converted into kg assuming that plant-based milk has a
similar density to regular milk (1L=1.03kg, data from Convert,nd). Given that there are 600
tea bags in each case, the per-case weights of different types of tea were calculated by
assuming that each tea bag weighs 2g (Leaf Tea Company,nd). After the conversion, the total
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weight of each product was obtained by multiplying the per-case kilograms with the number
of cases.

To ensure that our outcome variable (“total_emissions”) is measured on a uniform
scale, the per-unit carbon footprints of each product were converted into kgCO2eq/kg. For
instance, the carbon footprint of oat milk was found to be 0.22kgCO2eq/250ml (Marie, A. ,
2022). Because 250ml milk approximately weighs 259g, the carbon footprint was then
converted to 0.85kgCO2eq/kg (1000/259*0.22=0.85). The total carbon emissions of each
product were obtained by multiplying the per-kg carbon footprints with the total weights.

In terms of the distances, there are three possible scenarios. If the product is
domestically produced, then its dist_ship=0,  and dist_truck is measured from its supplier to
the Nest. If the product is imported and transported by truck only, it also has dist_ship=0, and
dist_truck is measured from its place of origin to the supplier and then to the Nest. Lastly, if
the product is imported via ship, its dist_ship is the distance between the place of origin and
the Port of Metro Vancouver, and dist_truck is measured from the Port of Metro Vancouver
to the supplier and the to the Nest.

3.3 Data Description

We consider total_emission as our outcome variable. It measures total emissions of
each product in kgCO2 equivalent across the entire supply chain, which includes emissions in
agriculture (land-use + farming +animal feed), processing, transportation, retail, and
packaging. Potential explanatory variables include type, total_weight, packaging, dist_ship,
and dist_truck.

Table 2 reports the summary statistics of all the quantitative variables in the dataset.
That the values of emission_per_kg are distributed over a wide range, which verifies that
each product varies in its impact on carbon emissions significantly. Moreover, the difference
between the minimum and maximum total_weight is also quite large. Consequently, the
total_emission of each food product, which is a product of emission_per_kg and total_weight,
also demonstrates large variations.

Table 2. Summary statistics of quantitative variables
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Table 3 provides the summary statistics of the major qualitative variables in the
dataset. The issue of insufficient data can be clearly seen from this table. Notice we only have
a few data points associated with each type. What’s even more problematic, for plant oil,
pork, rice, starch and tofu, there is only one record. Similarly, there is only entry in the data
with aluminum packaging. In order to further demonstrate the lack of data. We plotted the
range of the total emissions available for each food type (Figure 3). Consistent with Table 3,
for a number of the types (from egg to tofu), the distributions of their total emissions are as
narrow as lines. This indicates that we only have limited data to assess the agricultural impact
of each food type. As a result, there is likely to be high variance in the model fitting stage,
especially for products that only have one related record. We are well aware of this issue, and
will take extra care when analyzing model outputs.

Table 3. Summary statistics of qualitative variables
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Figure 1. The distribution of each food type’s total emissions

4. Methodology

4.1 Setup

The outcome variable is the amount of total supply chain carbon emissions of each
food category. Since the dataset is a cross sectional dataset and there is no time difference, we
think it is appropriate to use multivariable regression models to explore the impact of
potential factors during the important stages in the supply chain. Specifically, the stages being
investigated are agricultural production, transportation, and packaging. Before the regression
estimation, total carbon emissions are calculated by the following equation.

(1) 𝑡𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 =  𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑐𝑎𝑠𝑒𝑠 × 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚_𝑝𝑒𝑟_𝑐𝑎𝑠𝑒

(2) 𝑡𝑜𝑡𝑎𝑙𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =  𝑡𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑝𝑒𝑟_𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚

Notice that the footprint per kg covers the emissions across all stages of the supply
chain, which include agricultural production, processing, packaging, transportation, and
retail.

4.2 Basic Regressions

After obtaining the total emissions, we will investigate the correlations by establishing
multivariable regression models with different specifications. In order to examine the rough
impact associated with each supply chain stage, we will form a series of basic regression
models by gradually adding in explanatory variables until we reach the “full model”
(Equation (3)).

(3) 𝑡𝑜𝑡𝑎𝑙𝐸
𝑖

= α
0

+ α
1
𝑡𝑜𝑡𝑎𝑙𝑊

𝑖
+ β

1
𝑇1

𝑖
+... + β

12
𝑇12

𝑖
+ γ

1
𝑃1

𝑖
+ γ

2
𝑃2

𝑖
+
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α
2
𝑠ℎ𝑖𝑝𝑑𝑖𝑠𝑡

𝑖
+ α

3
𝑡𝑟𝑢𝑐𝑘𝑑𝑖𝑠𝑡

𝑖
+ 𝑒

𝑖
                              

The dependent variable is the total emissions (totalEi) obtained from Equation (2).
The independent variables are factors that have been found to be essential for the emissions
in different supply chain stages (Our World in Data, 2022), including agricultural production,
packaging, truck transportation, and ship transportation. In particular, totalWi is the total
weight of each product calculated by Equation (1). Truckdisti and shipdisti are the truck
distances and ship distances associated with product i. The categorical variable Pi represents
the packaging material: taking “aluminum” as base level, P1i = 1 if i is wrapped by paper, 0
otherwise; and P2i = 1 if i is wrapped by plastic, 0 otherwise The categorical variable Ti

represents the food types: taking “chicken” as the base level, T1i =1 if i is chocolate, 0
otherwise; T2i =1 if i is coffee, 0 otherwise, and so on.

The last term ei is the error term that captures other possible factors that we may not
be able to account for, for instance, the impact of retail, processing and food waste in the
supply chain emissions. These variables are hard to trace and therefore, it would be difficult
for us to collect their information. However, we are aware that by omitting these factors, we
may create bias that deteriorates the accuracy of our estimation results.

By these basic regressions, we assume all food types have the same per-kg emission
rate. Thus, after controlling the impacts of transportation (by adding and𝑠ℎ𝑖𝑝𝑑𝑖𝑠𝑡

𝑖

) and packaging (by adding Pi), the coefficients - would be our initial𝑡𝑟𝑢𝑐𝑘𝑑𝑖𝑠𝑡
𝑖

β
1

β
12

estimates of each food type’s agricultural impacts. For instance, could be interpreted as:β
1

compared to chicken, how much the agricultural processes involved in chocolate production
have contributed to the total carbon emissions in the data. Thus, by comparing the values,β
we are able to rank the products in terms of their agricultural emissions.

4.3 Select Best Subsets

Since we are interested in identifying products that are high in agricultural emissions
and subsequently replacing them with their low emission counterparts, we would like to see
which food types are particularly influential in the regression models.
To do so, we will apply an exhaustive search algorithm called regsubsets in R . Given a set of
variables (the variable pool) , the algorithm will return “best” regression models of various
sizes. Specifically, for each model size s, the algorithm will search for all possible subsets of
size s from the variable pool. It will then choose the best one that minimizes the residual sum
of squares. In our case, we will pass all the variables used in the full model (Equation (3))
into the algorithm as our variable pool. Among all the models prompted by regsubsets, we

will choose the optimal model size that maximizes the adjusted .𝑅2

4.4 Incorporate Interactions

Knowing that our former assumption on the uniform per-kg emissions may be too
rigid (Section 4.2), we will relax this by incorporating interaction terms into the basic models.
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This also serves as a robustness check to test if our estimates are able to remain consistent
under different specifications.

After comparing all the models that we previous get in Section 4.1 and 4.2, we will

pick one or two that perform the best based on their adjusted values, and these models will𝑅2

be taken as our candidate models in which the interactions will be added. Specifically, two
types of interactions will be considered, which include the interactions between total weights
and the food types, as well as the interactions between total weights and the packaging
materials. By adding the interactions, we now allow the per-kg agricultural emissions to vary
across types, that is, different types can now have different agricultural emission rates. Since
this specification is closer to real-life situations, it is the one that we will use to provide
quantitative evaluations when proposing the substitution plans.

5. Results

5.1 Basic Regressions

As our baseline models, we first construct a series of simple regressions, assuming
that all food types have exactly the same per-kg emissions. We gradually expand our simple
regression by adding in new controls until it reaches the full size (Equation (3) in Section
4.2). The coefficients obtained are shown in the first three columns in Table 4.

Column (1) corresponds to the case where only one control is added, that is, the total
weight of each product. We see that the total weight is estimated to have a significant
correlation with the total emission. In particular, for a 1kg increase in the total weight, there is
estimated to be a 9.688kg rise in the total carbon emissions regardless of the food types.
Although there are variations among the sizes of the coefficients on food types, they are not
significant enough for us to assert the agricultural impact that each type has on its total
emissions. Hence, in order to better identify the agricultural emissions, more controls are
required.

Column (2) shows the results when the packaging materials are incorporated into the
model. Despite the insignificance of the packaging materials, the incorporation of them
actually improves the model. Now, not only does the total weight continue to be significant,
the majority of the food types also become significant. After the addition of the packaging
materials, the effect of the total weight has been strengthened – the per-kg emission now
increases from 9.688 to 13.165 kgCO2/kg. Among all the food types that have been identified
as significant, the coefficient on rice is the lowest, which is about  -62,537 kgCO2. This
means, compared to chicken, the agricultural processes associated with rice production
contribute 62,537 kg less carbon to its total emissions in the dataset. In contrast, the
coefficient on coffee is the highest, which is about 44,773 kgCO2. This means, compared to
chicken, the agricultural processes of coffee production contribute 44,773 kg more carbon to
its total emissions. The estimates on plant oil, pork, tofu, and vegetables, however, are
insignificant. Their large variance is probably due to the lack of  records for each of these
types in the dataset.
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In order to build a more rigorous model, we have considered adding the distances as
another set of controls (Column (3)). The results are generally consistent with the Basic 2
Model (Column (2)). Notice there is no significant evidence for the impact of packaging
materials and the distances. This suggests that  the effect of packaging and transportation may
not be as remarkable as agricultural productions.

Notice the three basic models all have very large adjusted values. This further𝑅2

verifies that agriculture is the major contributor to the variations in the total emissions.
Among all three basic regressions, Basic 2 (Column (2)) is the one that has the highest

adjusted . Hence, we will regard it as our first candidate model.𝑅2

5.2 Best Subset

In order to filter out food types that are particularly influential in terms of their
agricultural impacts, we pass the full model (Column (3)) into an exhaustive search algorithm
in R called regsubsets. This algorithm will try all possible subsets of variables used in the full

model, and we consider the one that maximizes the adjusted as the best subset. The model𝑅2

that got selected is the following:

(4) 𝑡𝑜𝑡𝑎𝑙𝐸
𝑖

= α
0

+ α
1
𝑡𝑜𝑡𝑎𝑙𝑊

𝑖
+ β

1
𝑇1

𝑖
+... + β

11
𝑇11

𝑖
+ γ

1
𝑃1

𝑖
+ γ

2
𝑃2

𝑖
+ 𝑒

𝑖

Compared to the full model, there are three things that the best subset model drops:
type plant oil, ship distances, and truck distances. Again, these variables are excluded
probably because they do not help much in explaining the variations in the total emissions.
The fourth column in Table 4 displays the output of this best subset model. We see that the
results are similar to the ones estimated from Basic Model 2 and 3 (Column (2) and (3)). This
similarity observed across the models further demonstrates the consistency of our

estimations. Notice the best subset model has the highest adjusted , which makes it another𝑅2

appealing candidate model.
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Table 4. Coefficient table for Basic Model 1-3 and Best Subset Model
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5.3 Identify Products to Be Replaced

Since our ultimate goal is to carry out proper substitution plans for AMS to reduce
their supply chain emissions, after obtaining the two decent candidate models (Basic Model 2
& Best Subset), we would now like to use them to identify products that need to be replaced.

Figure 2 plots the coefficients on all food types that are estimated by our two
candidate models. By comparing the sizes of these coefficients, we are able to rank their
relative impact on agricultural emissions; thus, the products we aim to replace are the ones
that are significantly high on the plot. The contrasting of the two models serves two purposes.
First, it provides a direct visualization of the consistency of the estimation results; second, it
ensures that the products identified are not outstanding by chance.

Because plant oil, pork, and tofu have been consistently estimated to be insignificant
(Table 4), they will not be considered in our final recommendations (There is only one
estimate for plant oil because it does not get selected in the Best Subset Model). After
discarding these three types, we have found two major products that are extensive in
agricultural emissions and easy to substitute. The first one is coffee, and we will replace it
with its low-emission counterpart, tea; the other one is dairy, and we will replace it with its
low-emission counterpart, vegan milk. Furthermore, as a supplementary recommendation, we
have also identified chocolate as our third target. Although its overall agricultural emissions
are not particularly high, the impact differs between dark and white chocolate (Bianchi et al.,
2020). Therefore, by substituting white chocolate with dark, we are hoping to further improve
AMS’ supply chain emissions.

Figure 2. Comparing the agricultural impacts of different food types
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6. Discussion

6.1 Robustness Check and Alternative Specifications

Under Model Basic 2 and Best Subset, the null hypothesis is that our models have
homoscedastic errors – the variance of the error term keeps constant. To check this
assumption, we first plot the residuals against the fitted values for both models. We can see
that the majority of the residuals are distributed around 0, especially in the central parts of the
graphs. However, there are also some scattered points at the edges of the graphs that are far
from 0; it is hard to tell from this visual inspection if they are outliers or if they indicate the
underlying heteroscedasticity. Therefore, we further implement the Breusch-pagan test so that
we are able to obtain numerical evidence to examine our assumption. Table 5 shows the
resulting p-values for Model Basic 2 and Best Subset, which are 0.0836 and 0.0613
respectively. Taking a 5% significance level as the rejection criterion, both results appear to
be insignificant since they are larger than 0.05. Thus, there is no sufficient evidence to reject
our null hypothesis, meaning our assumption of homoscedasticity remains valid for our two
candidate models. However, it is possible that our test result is subjected to the sample size of
our dataset; the homoscedasticity might not necessarily hold if more data points were
observed.

Figure 3. Residuals against fitted values for Model Basic 2 and Best Subset

Table 5. Breusch-pagan p-values for Model Basic 2 and Best Subset
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The second assumption implied by the candidate models is that the error terms are
normally distributed. A quantile-quantile plot (QQ-plot) is used to check for this assumption.
As Figure 4 shows, the points do not quite align on a straight line. Specifically, large
deviations are seen at the ends, which indicates that the actual distribution of the errors has
heavier tails instead of being normal. With this being said, we take this as one of our
limitations. Although our data may not follow an exact normal distribution, it is still
appealing to make such an assumption since it allows clear and easy-to-interpret models for
analysis.

Figure 4. QQ-plots for Model Basic 2 and Best Subset

When building our basic regressions, we implicitly assume that for all food types and
packaging materials, the per-kg emissions are the same. However, this assumption can be
over-simplified since it is likely that different food types may vary in the emission rates
during their agricultural production. Moreover, it is possible that different packaging
materials also differ in their kg-emission rates. To account for these, we will now incorporate
interactions into the candidate models (Equation (5) & (6)).
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Equation (5) is the model when interactions are added for Model Basic 2. It includes
all food types and controls for both packaging materials and transportation distances.
Equation (6) is the expanded version for Model Best Subset. Based on the exhaustive search
algorithm, it includes all food types except for plant oil, and the transportation also gets
excluded. With the interaction terms, not only do we control for the kg-emissions of the
packaging material used, but we also enable the per-kg agricultural emissions to change
across different food types.

The estimated coefficients of Model (5) and (6) are presented in Table 6. Column (1)
corresponds to Model Basic 2 with interactions and Column (2) corresponds to Model Best
Subset with interactions. We observe that the results obtained from the two models are
generally similar, though discrepancies occurred for the fixed agricultural impacts ( ) ofβ
chocolate and dairy. However, notice compared to the per-kg emissions of food types ( ), theδ
fixed impacts appear to be much less significant. This indicates that after adding the
interactions, most of the variations in the data are explained by the agricultural emission
rates. It is worth noting there are some null values in Table 6. Again, this is likely due to the
issue of insufficient data. Since for some of the products, we only have one or two records, it
would cause problems when trying to regression lines with different slopings (models with
interactions).

Furthermore, the Model (5) and (6) also reinforce our previous findings. In particular,
coffee, chocolate and dairy are three types that we identified as foods to be replaced, and they
still remain high in their estimated agricultural impact in the extended models. For instance,
in Column (1), the fixed agricultural impact of coffee is estimated to be 3164 kgCO2 more
than the reference type, chicken; and its per-kg emission rate is also quite high, achieving
8.38 kgCO2/kg more, compared to chicken. In terms of chocolate, despite a small (yet highly
insignificant) fixed agricultural impact, it is estimated to have the second largest per-kg
emission rate, which is 12.6 kgCO2/kg more than chicken. Similar to dairy, among all food
types, it is estimated to have the highest per-kg emission rate.

Overall, our results remained robust under different tests and alternative
specifications. Moreover, with the interactions added, our models become more flexible and
closer to real-life situations, thus, we will use this specification to provide quantitative
assessment for our recommendations. Since Model Basic 2 with interactions has a slightly

higher adjusted , it is the model that we prefer when simulating the substitution plans.𝑅2
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Table 6. Coefficient table for Model Basic 2 and Best Subset with interactions
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6.23 Recommendations

Based on the results, we generate three main practical recommendations. For each
recommendation, we will replace different portions of food types that have high agricultural
emissions with alternatives that have lower agricultural emissions.

The first recommendation is replacing white chocolate with dark chocolate.
According to existing research, white chocolate emits 4.3 kgCO2eq while dark chocolate
emits only 1.9 kgCO2eq (Bianchi et al., 2020). AMS is currently purchasing a large
percentage of white chocolate, thus, cutting the purchase of white chocolate is essential for
reducing CO2 emission. We present three different percentages (30%, 40%, and 50%) of
white chocolate to be replaced by dark chocolate. The emission reductions are 579.93,
773.24, 966.55 kgCO2eq respectively (Table 7). Compared with the original amount of
emissions for chocolate (39094.22 kgCO2, see Figure 5), by our three replacement plans,
1.48%, 1.98%, 2.47% of the total chocolate emissions can be reduced. Although the
percentage change is not that significant, the actual amount of reduction is considerable.

Figure 5. Changes in total emissions of chocolate
(0%, 30%, 40%, 50% white chocolate replaced by dark)

Table 7. Reductions in total emissions of chocolate
(30%, 40%, 50% white chocolate replaced by dark)

Note: Under each substitution plan, the first value is the absolute reductions, the second value (in parenthesis) is
the percentage reduced compared to current total emissions of chocolate.
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The second recommendation is replacing coffee with tea. In the result section
(section 5.3), we figure out that the agricultural production of tea generates less emission than
coffee, and hence, we consider it as the substitute of coffee. Figure 6 shows the changes in
carbon emissions when decreasing coffee and increasing tea by three different percentages.
The amount of CO2 reductions are 5359.97, 7146.62 and 8933.28 kgCO2eq respectively
(Table 8). When we reduce 25% of coffee and replace it with 25% of tea, up to 24.85% of
original emission is successfully reduced.

Figure 6. Changes in total emissions of coffee and tea
(0%, 15%, 20%, 25% coffee replaced by tea)

The third recommendation is replacing dairy with vegan milk. In section 5.3, the
result shows that vegan milk has less agricultural emissions than dairy. Therefore, we suggest
that AMS can use vegan milk to replace dairy to reduce carbon emissions. When we decrease
15%, 20%, and 25% of dairy and correspondingly increase 15%, 20%, and 25% of vegan
milk, the emission reductions are 9134.76, 18608.92, and 28083.08 kgCO2eq. We also have
an interesting finding that soy and nut milk can be used to make vegan cheese (Alfaro, 2021).
With this being said, besides the direct shifting from milk to vegan beverages, the use of
animal-based cheese can also be replaced by plant-based ones, which can further reduce the
carbon emissions.
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Figure 7. Changes in total emissions of dairy and vegan milk
(0%, 15%, 20%, 25% dairy replaced by vegan milk)

Table 8. Reductions in total emissions of coffee/dairy and tea/vegan milk
(15%, 20%, 25% coffee/dairy replaced by tea/vegan milk)

Note: Under each substitution plan, the first value is the absolute reductions, the second value (in parenthesis) is
the percentage reduced compared to current total emissions of coffee/dairy and tea/vegan milk.

6.3 Economic meaning

Our primary goal of this paper is to help reduce AMS’ carbon emissions. But how
does our research align with the economy? Carbon emission has already become a critical
problem all around the world, thus, how to balance carbon reduction and economic growth is
an important issue (Fei et al., 2019). As UBC Climate Action Plan 2020 stated, the
implementation of provincial carbon tax significantly affects UBC’s financial feasibility,
UBC needs to pay $55 per tonne of CO2 emission. Hence, our research on ways to reduce
AMS’ carbon emissions not only aims to build a eco-friendlier campus, but can also help
release UBC’s financial burdens. The highest emission reduction results we generate is in
recommendation 3, which is 28083.08 kgCO2eq. Suppose that our dataset is collected over a
time span of two terms in the winter session, this recommendation can help AMS save about
1544.6 CAD in 8 months. According to UBC Climate Action Plan 2020, once we reduce the
carbon emissions for AMS, we are reducing the carbon costs for both AMS and UBC.

23



Policy Recommendations of Carbon Footprints Reduction

6.5 Limitations

Throughout this research, there are several limitations that may affect our results. The
first limitation is that the sample size is small, which means that our data is not adequate.
There are only 39 observations in the dataset, leaving some food types with only one or two
products for us to analyze. Back to Figure 1, the distribution of some food types is just a line
instead of a range in the graph. This means that we only have a few data points for this food
type, which can cause a lot of variances when trying to fit a regression line. The more data we
have, the more accurate our result will be. Therefore, the results for some food types, such as
egg, oil, pork, rice, starch, tea and tofu, would not be as reliable as chicken, chocolate, coffee
and dairy, which are associated with more data. If we had a bigger sample size, we could
overcome this issue and the results will be much better.

The second limitation to our model is that there are omitted variables that we did not
consider. As we mentioned in section 4.2, the impact of retail, processing and food waste are
not explicitly controlled in the models. These variables are not included because we do not
have access to related data. Moreover, for retail and processing, it is difficult to come up with
a concrete measurement based on which their impact on emissions can be quantitatively
estimated. However, all of these appear to be potential contributors of the dependent variable
total_emission, and they are correlated to other explanatory variables in the models (Our
World in Data, 2022). Therefore, the omission of these factors may lead to underestimated
model outputs, creating bias that deteriorates the accuracy of our results.

The last limitation is that we did not consider quantity supply and demand in our
research. When we are generating our recommendations, we do not take into account the
students’ actual demand of the products. If the increase of the alternatives exceeds the
demand, as a drawback, it may cause a lot of food waste.   For example, although tea and
coffee are substitutes, most of the consumers of AMS are college students, and their demand
for coffee may be much greater than their demand for tea. Therefore, if AMS greatly reduces
the purchase of coffee and replaces it with tea, it may lead to too much supply of tea and little
demand, thus leading to food waste. The same is true for other recommendations where our
proposal may not match the market demand of AMS. The emissions caused by food waste
cannot be ignored, in fact, food losses and waste are found to be responsible for ¼
greenhouse gas emissions from food (Ritchie, 2022). Therefore, if the replacements are
conducted blindly without a thorough understanding of the market demand, the consequent
food wastes may result in adverse impact, causing even more CO2 emissions. This is also the
motivation behind our provision of different percentage options in the recommendation
section. We hope that AMS can pick the one that best fits their needs, considering both the
supply and demand.

7. Conclusion

In this paper, we analyze the environmental impact of different food products with the
dataset provided by AMS, using different regression models. We focus on the agricultural
emissions of different foods, hoping to reduce carbon emissions by replacing foods that have
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large agricultural emissions with alternatives that are low in agricultural emission. Based on
the original data provided by AMS, we first conducted a secondary research to find the total
emissions of various foods in the whole supply chain. We started with a basic model and kept
adding controls until we reached the full model. Then, we implemented the regsubsets
algorithm to get the best subset model which highlights variables that are most important in
explaining the variance in the data. By comparing the results of these models, we identify that
chocolate, dairy and coffee should be replaced due to their high agricultural emission. After
that, interactions were incorporated into the previous models, which not only makes our
specification closer to real-life situations, but also helps us check the assumption of uniform
per-kg emissions that we adopted in the basic models. Based on the results of the interaction
model, three recommendations were offered for AMS to reduce carbon emissions. With
various replacement percentages, AMS can successfully reduce at least 579.93 kgCO2eq and
at most 28083.08 kgCO2eq. This not only makes AMS more environmentally friendly, but
also helps it save on carbon tax overhead.

We acknowledge that there are limitations in the study and may affect the above
results. For example, our estimations are subject to a small sample size and omitted variables,
which may influence the accuracy of our results. Besides, another limitation is that we do not
consider the market conditions in reality – if the increase of the alternatives exceeds the
demand, the reduction of total emission may be offset by the subsequent food wastes, which
may affect the feasibility and effectiveness of our recommendations. In future study, if AMS
could collect more data on student’s demand for different food types, this information can be
incorporated into the analysis, enabling the recommendations to be more relevant to real life
and thus avoiding carbon emissions from wasted food. In addition, in order to establish more
rigorous models, further factors can be investigated and controlled, such as the techniques
that the foods are produced and the ways that the foods are stored. Though our research may
still be preliminary at this stage, we hope it can be an informative attempt that brings
inspiration for future study and policy-making.

25



Policy Recommendations of Carbon Footprints Reduction

References

AMS Sustainable Action Plan - University of British columbia. (n.d.). Retrieved April 18,
2022, from
https://www.ams.ubc.ca/wp-content/uploads/2021/02/AMS-Sustainable-Action-Plan-
ASAP.pdf

Alfaro, D. (2021, December 22). What is vegan cheese? The Spruce Eats. Retrieved April
8, 2022, from https://www.thespruceeats.com/what-is-vegan-cheese-5189114.

Ayres, R. U. (1995). Life cycle analysis: A critique. Resources, conservation and
recycling, 14(3-4), 199-223.

Brusseau, M. L. (2019). Sustainable development and other solutions to pollution and
global change. In Environmental and pollution science (pp. 585-603). Academic
Press.

Bianchi, F. R., M oreschi, L., Gallo, M., Vesce, E., &amp; Del Borghi, A. (2020).
Environmental analysis along the supply chain of dark, milk and White Chocolate: A
Life Cycle Comparison. The International Journal of Life Cycle Assessment, 26(4),
807–821. https://doi.org/10.1007/s11367-020-01817-6

Convert KG to liters of milk. Convert kg to liters of milk. (2017) Retrieved February 28,
2022,  from
https://vodoprovod.blogspot.com/2017/12/convert-kg-milk-to-liters-online.html

Food: Greenhouse gas emissions across the supply chain. Our World in Data. (n.d.).
Retrieved February 28, 2022, from
https://ourworldindata.org/grapher/food-emissions-supply-chain?country=Beef%2B%
28beef%2B+herd%29~Cheese~Poultry%2BMeat~Milk~Eggs~Rice~Pig%2BMeat~P
eas~Bananas~Wheat%2B+%26%2BRye~Fish%2B%28farmed%29~Lamb%2B%26
%2BMutton~Beef%2B%28dairy%2Bherd%29~Shrimps%2B+%28farmed%29~Tofu
~Maize

Google. (n.d.). Google maps. Retrieved February 28, 2022, from
https://www.google.com/maps

Hill, J. (2013). Life cycle analysis of Biofuels. Encyclopedia of Biodiversity, 627–630.
https://doi.org/10.1016/b978-0-12-384719-5.00365-8

How to measure loose leaf tea? easy steps for the best brew. Simple Loose Leaf Tea
Company. (2019, September 23). Retrieved February 28, 2022, from
https://simplelooseleaf.com/blog/loose-leaf-tea/how-to-measure-loose-leaf-tea/

Konstantas, A., Jeswani, H. K., Stamford, L., & Azapagic, A. (2018). Environmental impacts

26

https://www.thespruceeats.com/what-is-vegan-cheese-5189114
https://doi.org/10.1016/b978-0-12-384719-5.00365-8


Policy Recommendations of Carbon Footprints Reduction

of chocolate production and consumption in the UK. Food research international, 106,
1012-1025.

Life cycle assessment side stream potato starch - CPH Deutschland. (n.d.). Retrieved April
13, 2022, from
https://www.cph-group.com/wp-content/uploads/2020/11/LCA-Factsheet-side-stream-
potato-starch_Novidon_cph.pdf

Marie, A. (2022, January 26). English breakfast tea benefits and side effects: 2022 ethical
consumer guide. HEALabel. Retrieved February 28, 2022, from
https://healabel.com/e-ingredients/english-breakfast-tea

Migdon, B. (2021, November 2). Chefs declare war on a trendy fruit because of its enormous
carbon footprint. TheHill. Retrieved February 28, 2022, from
https://thehill.com/changing-america/sustainability/environment/579587-chefs-declar
e-war-on-a-trendy-fruit-because-of

Migliore, G. (2021). Sustainable Food Consumption Practices: Insights into Consumers’
Experiences. Sustainability, 13(11), 5979.

Nijdam, D., Rood, T., & Westhoek, H. (2012). The price of protein: Review of land
use and carbon footprints from life cycle assessments of animal food products and
their substitutes. Food policy, 37(6), 760-770.

Poore, Nemecek. (2018). Reducing food’s environmental impacts through producers and
consumers. The mean (average) GHG emissions data is the data used. It is then
converted to the portion size of each item. Oat Milk Carbon Footprint | 0.22kg CO2e.
Retrieved February 28, 2022, from https://www.co2everything.com/co2e-of/oat-milk.

Ritchie, H., & Roser, M. (2020, January 15). Environmental impacts of food
production. Our World in Data. Retrieved February 27, 2022, from
https://ourworldindata.org/environmental-impacts-of-food.

Ritchie, H. (2020, March 18). Food waste is responsible for 6% of global greenhouse gas
emissions. Our World in Data. Retrieved April 8, 2022, from
https://ourworldindata.org/food-waste-emissions.

Sea routes and distances. Ports.com. (n.d.). Retrieved February 28, 2022, from
http://ports.com/sea-route/.

Solomon, S., Plattner, G. K., Knutti, R., & Friedlingstein, P. (2009). Irreversible  climate
change due to carbon dioxide emissions. Proceedings of the national academy of
sciences, 106(6), 1704-1709.

27

https://healabel.com/e-ingredients/english-breakfast-tea
https://www.co2everything.com/co2e-of/oat-milk
https://ourworldindata.org/environmental-impacts-of-food
http://ports.com/sea-route/


Policy Recommendations of Carbon Footprints Reduction

Stoessel, F., Juraske, R., Pfister, S., & Hellweg, S. (2012). Life cycle inventory and
carbon and water footprint of fruits and vegetables: application to a Swiss retailer.
Environmental science & technology, 46(6), 3253-3262.

SWNS staff. (2021, September 6). Scientific study aims to find out if margarine or butter is
more environmentally friendly. digitalhub US. Retrieved April 13, 2022, from
https://swnsdigital.com/us/2020/03/scientific-study-aims-to-find-out-if-margarine-or-
butter-are-more-environmentally-friendly/

The University of British Columbia Climate Action Plan 2020. (n.d.). Retrieved April 18,
2022, from
https://planning.ubc.ca/sites/default/files/2019-11/PLAN_UBC_ClimateActionPlan.p
df

Vallenas, A., Monticelli, D., Antioniw, J., & French, V. (2021) AMS NEST: Net zero carbon
emissions by 2025 - sustain.ubc.ca. AMS Nest: Net Zero Carbon Emissions by 2025,
from
https://sustain.ubc.ca/sites/default/files/seedslibrary/CHBE_573_AMS%20Nest_Net
%20Zero%20Carbon%20Emissions%20by%202025_FinalReport.pdf

Winans, K. S., Macadam-Somer, I., Kendall, A., Geyer, R., & Marvinney, E.
(2019,December 10). Life cycle assessment of California unsweetened almond milk -
the International Journal of Life Cycle Assessment. SpringerLink. Retrieved February
28, 2022, from https://link.springer.com/article/10.1007/s11367-019-01716-5#citeas

Yang, F., Shi, B., Xu, M., & Feng, C. (2019). Can reducing carbon emissions improve
economic performance – evidence from china. Economics, 13(47), 1-39. Retrieved
February 28, 2022, http://dx.doi.org/10.5018/economics-ejournal.ja.2019-47

28

https://planning.ubc.ca/sites/default/files/2019-11/PLAN_UBC_ClimateActionPlan.pdf
https://planning.ubc.ca/sites/default/files/2019-11/PLAN_UBC_ClimateActionPlan.pdf
https://sustain.ubc.ca/sites/default/files/seedslibrary/CHBE_573_AMS%20Nest_Net%20Zero%20Carbon%20Emissions%20by%202025_FinalReport.pdf
https://sustain.ubc.ca/sites/default/files/seedslibrary/CHBE_573_AMS%20Nest_Net%20Zero%20Carbon%20Emissions%20by%202025_FinalReport.pdf
https://link.springer.com/article/10.1007/s11367-019-01716-5#citeas
http://dx.doi.org/10.5018/economics-ejournal.ja.2019-47

