UBC Social Ecological Economic Development Studies (SEEDS) Student Report

Integrating Various Building Metrics from the AMS Student Nest into a Presentable Dashboard
Anna Gudimova, Dan Lee, Euan Chow, Mike Griffin, Yuxin Xu
University of British Columbia
EECE 409/429/419/439/400/469
April 08, 2016

Disclaimer: “UBC SEEDS Program provides students with the opportunity to share the findings of their studies, as well
as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this
is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these
reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned

in a report or a SEEDS team representative about the current status of the subject matter of a project/report”.

The University of British Columbia

Final Report Including:

Requirements Specification,
Design,
Verification & Validation, and
Suggestions For Project Continuation Reports

Integrating Various Building Metrics from the AMS Student
Nest into a Presentable Dashboard (Campus + Community
Planning, AMS Sustainability)

Prepared By:
Anna Gudimova
Euan Chow
Meng-Yeng (Dan) Lee
Micheal Griffin

Yuxin (Eugene) Xu
UBC AMS Sustainability
April 8, 2016

The following is a list of reports that identify the requirements for the implementation, the design
decisions satisfying the requirements, the verification and validation of the system and finally a few
suggestions for project continuation by our client.

The University of British Columbia

Requirements Specifications V1.0

Integrating Various Building Metrics from the AMS Student
Nest into a Presentable Dashboard (Campus + Community

Planning, AMS Sustainability)

Prepared By:
Anna Gudimova
Euan Chow
Meng-Yeng (Dan) Lee
Micheal Griffin

Yuxin (Eugene) Xu
UBC AMS Sustainability

April 7, 2016

Executive Summary

With the recent construction of the University of British Columbia’s (UBC) Alma Mater Society
(AMS) Student Nest building, the AMS Sustainability office wants to integrate it into UBC’s culture
of environmental consciousness. Sensors to collect building data were installed throughout the
Nest, an in-vessel composter and waste scale was installed, and databases were created to store
and aggregate the information collected. However, because these databases are stored
separately, comparing and visualizing this data using specific time intervals is needed so that the
data can be more clearly analyzed and interpreted.

The goal of AMS Sustainability with regards to this project is to provide students with information
about how much waste they produce in the Nest, and use that information to spread awareness
and help cut down on garbage. Without going over-budget and protecting the security and
integrity of the data collected, AMS Sustainability wants to design and create a new database on
an active server that integrates the current databases into one location.

Table of Contents

Executive Summary
Table of Contents
Revision History
1 Introduction
1.1 Product Overview
2 Specific Requirements
2.1 External Interface Requirements
2.1.1 User Interfaces
2.1.2 Software Interfaces
2.1.3 Communication Protocols
2.2 Functional Product Features
2.2.1 Database Requirements
2.2.2 Dashboard Requirements
2.3 System Attributes
2.3.1 Reliability
2.3.2 Availability
2.3.3 Security
2.3.4 Maintainability
2.3.5 Portability
2.3.6 Performance

Revision History

Author Date Reason For Changes Version
l__|

Micheal Griffin 10/30/2015 | Proposal for Database V1.0

Anna Gudimova | 11/16/2015 | Change from Mongo DB to Microsoft SQL | V1.1

Anna Gudimova | 11/30/2015 | Changes to the frequency of data V1.2
requests
Micheal Griffin 02/15/2016 | Removing the dashboard V1.3

implementation as part of the
requirements for this project

1 Introduction

1.1 Product Overview

This document outlines the functional and nonfunctional requirements and constraints for
the AMS Nest Dashboard, which includes the integration of the two main sources of data
in the building onto one Canadian server; and the implementation of the dashboard using
Visual Studio to display building metrics in the Nest. This is the first release (version 1.3) of
the dashboard.

2 Specific Requirements

The following is a list of the requirements that need to be met in order to satisfy the clients needs,
and allow for further refinements. Any constraints in relation to the requirements are included,
and help to identify obstacles in completing the final deliverable. The list is used as a basis for our
design decisions along with our testing and verification of the system.

2.1 External Interface Requirements

2.1.1 User Interfaces

The dashboard must have all waste and energy sensor data recorded and available
for research purposes. The dashboard must display the data in a recognizable
format so that users are capable of using the data for their own projects. The
categories must be consistent with the themes currently used in the AMS Nest,
and UBC.

The system must not display inaccurate or “zero” results when calculating the
difference in consumption of energy, or production of waste. As an example, if the
gas sensors produce negative values, we must not display this to the end-user.
That is, someone interacting with the dashboard should only be given
improvement statistics or retrogressions based on the sensor data from the Waste
Scale, or the AMS Sensor Database.

2.1.2 Software Interfaces

The Canadian Cloud Server must have Python 2.7 (DO NOT upgrade Python) and
pymssql library installed. All three nodes of the back end, the Cloud Server, the
AMS Sensor Server, and the Waste Scale Computer must always be on and must
have internet connection. If python script files need to be relocated, they must be
moved along with the whole folder in which they are located. The batch file that
runs the python script must not be removed from the Startup folder on either the
Cloud Server or the Waste Scale computer.

The database on the Cloud Server must only store positive or zero resource
consumption measurements.

2.1.3 Communication Protocols

The AMS Sensor Server and the Waste Scale computer must have port 1433
opened for TCP connection to the Canadian Cloud server.

2.2 Functional Product Features

The following list outlines the functional requirements for the Nest Dashboard. These
requirements were created based on client needs, project scope, and the restrictions
related to the implementation of the dashboard and the database.

2.2.1 Database Requirements

1. Integrate two of the three main building metrics in the Nest into one
location: the building aggregate data, which includes sensors collecting
information for greywater, electricity, water usage, natural gas, solar hot
water and district energy; and the waste scale, tallying the total amount of
solid waste, recycling, paper and organics exiting the Nest daily.

a. The in-vessel composter - storing information about soil
production from in-house compost - was temporarily removed
from the requirements of this deliverable because the sensors
were broken. The data will be integrated at a later time.

2. The database must be on an accessible server with minimal delay
(unnoticeable to users).

3. Information stored on the database must date back one year before being
transferred to a local computer in the Nest.

4. Integrated database must verify the information being mirrored by the
AMS Sensor database, and verify the results.

5. The layout must be modifiable in the future.

a. For example, if a new sensor measuring something like building
occupancy is added to the Nest, it must be possible to create a
new table in the database without having to rebuild it.

6. The database must be able to take multiple requests without failing, and
ensure atomicity.

a. An example is to say that if 100 data requests are being written to
the integrated database, a method should ensure that either all of
the data has accurately been sent, otherwise decline the request
and confirm none of it has been received to ensure the database
avoids missing information or duplicates.

7. The units for each sensor must be listed in each table, and be consistent.

2.2.2 Dashboard Requirements

1. The dashboard must address two main features:
a. Display trends related to student behaviour and their impact on
the Nest

i For example, the amount of waste created from one week
to another.
b. Display graphs and/or lists for research purposes.
i Students must be able to capture the information for their
own research.
2. The goal of the dashboard is to affect student behaviour. Research should
back design decisions and inform the layout in order to encourage
students to maintain sustainable patterns within the building.

2.3 System Attributes

2.3.1 Reliability

The database must track errors so that anyone interacting with the data can
diagnose the problem. If the data is unavailable, the dashboard must be made
aware of the problem, so that atomicity can be relayed throughout the system. For
example, if the server is unable to reach the waste scale, and the database is
unable to record information in the Waste tables, the dashboard should avoid
displaying information that may be inaccurate. This ensures the data is reliable.

2.3.2 Availability

The cloud server must poll the AMS Sensor Database and the Waste Scale
Database so that information can be added once it is available. If either system is
unreachable, the data must be added once it is back online.

2.3.3 Security

Confidentiality and integrity of the database must be protected, i.e. potential
intruders must not be able to access or modify the data being transferred.

2.3.4 Maintainability

The database must allow for modifications in the future such as additional sensors,
unit measurement changes (g to Kg), and maintain separate tables for each data

type.

2.3.5 Portability

The software must be capable of running on a windows environment. The user
interface must use software capable of being deployed on the dashboard in the
Nest, and avoid using processing power above 1GHz, or more than 1Gb memory
(constraints related to the dashboard). The language must be familiar to someone
at a 4th year undergraduate level or higher, and have sufficient comments to
make improvements and modifications for further development.

2.3.6 Performance

The dashboard must run on two screens simultaneously to address the need for
user feedback and research capabilities. It must maintain feedback without delays,
and avoid freezing or crashing without data present.

The University of British Columbia

Design Report

Integrating Various Building Metrics from the AMS Student
Nest into a Presentable Dashboard (Campus + Community
Planning, AMS Sustainability)

Prepared By:
Anna Gudimova
Euan Chow
Meng-Yeng (Dan) Lee
Micheal Griffin

Yuxin (Eugene) Xu
UBC AMS Sustainability

April 8, 2016

Design Analysis for AMS Nest Dashboard

Table of Contents

1 Introduction
1.1 Design Overview

1.1.1 Back End
1.1.2 Front End

1.2 Requirements Traceability Matrix
2 System Architectural Design
2.1 Chosen System Architecture
2.2 Discussion of Alternative Designs
2.3 System Interface Description
3 Detailed Description of Components

3.1 Back End Design
3.1.1 Server Sensor Database

3.1.2 Server Waste Database

4 User Interface Design
4.1 Description of the User Interface

4.1.1 Screen Images
4.1.2 Objects and Actions

Page 2

1

T e e S e e e

Introduction

1.1 Design Overview

We will begin with introducing the top level design of the system. Illustration 1 displays a
High-Level diagram of the project, and the components we will be addressing.

The system has two main components: the back end and front end. The back end resides on
a Canadian Cloud server and contains SQL Server Express 2014 databases and data
processing components called scripts written in Python 2.7. The front end - the Dashboard,
is a Display that provides a user-friendly interface for analyzing and displaying data stored on
the back end.

1.1.1 Back End

Back end integrates AMS sensor data for water, natural gas, and electricity
measurements as well as AMS Waste Scale data for the amount of paper,
recyclables, organics, and mixed garbage into two distinct SQL databases stored on a
Canadian cloud server. Sensor data for each sensor is pulled from the mirror backup
of the AMS Nest sensor database, downscaled to one entry, per day, per sensor, and
inserted into the Sensor database on the cloud server. AMS Nest waste data is
retrieved from text files stored on a local AMS Nest computer and inserted into the
Waste database on the cloud server.

1.1.2 Front End

On the front end, C# application queries databases stored on the server, performs
light data processing (for example, addition and comparison operations) and displays
the data on our web page. This screen for the dashboard is located on the bottom
floor of the NEST next to the AMS Sustainability center.

____________________ e T
I
I
6 I
|
—3—— ! |
(_ Electricity B
. . "
- , __+_j' |I ;
E ' ' I
Airquality | AMS ' Dashboard —
; Data Transfer Metri
Databases | System etric
Crctpnop [| I | | Calculation &
A~ - . | : - Graphs
1] . N g L
[Wisste o ||

[llustration 1 - High Level Diagram

1.2 Requirements Traceability Matrix

The following two traceability matrices outline where each major component from the
database and the dashboard were accomplished. This matrix is used to identify which
requirements need further attention and additional requirements that may not have been
addressed in future iterations.

Requirements

Database Components

Script for AMS
Sensor Data transfer

Script for Waste
Scale Data transfer

Database Structure

Database must be
on an accessible
server

Prototype 1

Data must date
back one year
before being pulled
to local computer

(Client is
responsible for data
backup after one
full year)

Integrated database
verifies information

Prototype 2

Layout allows
modification for
additional sensors

Final Deliverable

Database ensures
atomicity

Prototype 1

Units labeled &
consistent

Prototype 1

Script does not
crash when
performing daily
routine tasks

Final Deliverable

Final Deliverable

Handles situation
where Waste
Computer, Sensor
Database or Cloud
Server is down

Final Deliverable

Prototype 2

Requirements

Dashboard Components

Web Platform
(visual studio)

Injunctive /
Normative
Slideshow

Graphs/Lists using
integrated data

Run on a windows
environment

Prototype 2

Affect student
behavior using
injunctive feedback

Prototype 2

Provide graphs
and/or lists for
research

Final Deliverable

2 System Architectural Design

2.1 Chosen System Architecture

We chose a windows operating system which would allow us to easily query data from the
existing AMS Sensor Database, and the Microsoft SQL language would mean the languages
between the systems are consistent.

2.2 Discussion of Alternative Designs

Two types of operating systems were considered, along with two types of software to carry
out the design. The windows operating system is widely used within UBC, however there are
additional costs for multiple users. Linux is fast and doesn’t have license fees; however, it
may be unfamiliar for future projects, and difficult to transition to a windows environment.
An SQL database is relational and makes better correlations for visualizing data, however it
requires more time to create the database and integrate data appropriately. NoSQL does
not require predefined implementations of the data, and can easily include in-structured
data-types, however future relationships cannot be built on top, making it difficult to build
off of the database in the future.

2.3 System Interface Description

The database is structured such that the individual data, the units (i.e. Kg), and the waste
type (i.e. recycling, garbage, paper) are separated into three tables so that additional sensors
can be added without modifying the table layout. This satisfies our requirement because it is
maintainable, and easily portable.

3 Detailed Description of Components

3.1 Back End Design

The Canadian Cloud server stores two SQL Server Express databases: sensor database and
waste scale database. We will name these databases Server Sensor Database and Server
Waste Database further in the document to avoid confusion with AMS Sensor Database and
AMS Waste Computer. Two python scripts are responsible for data processing and data
transfer. One of the scripts obtains data from the AMS Sensor Database, processes the data,
then stores it in the Server Sensor Database. The other script obtains data from the AMS
Waste Computer and stores it in the Server Sensor Database. Each script records errors
during this process in a log file.

3.1.1 Server Sensor Database

This database stores resource consumption measured everyday by 3 types of
sensors: electricity, natural gas, and water sensors. Each data entry represents the
total resource consumption measured by a single sensor. Currently, we are
monitoring readings from 15 electricity sensors, 2 natural gas sensors, and 1 water
sensor. There is, however, opportunities for adding more sensors to the database if
further research and design requirements change.

The data stored on the AMS Sensor Database for the sensors we are monitoring
have two different forms of representation: readings that represent cumulative
resource consumption and readings that represent the rate of resource
consumption at a certain time. More specifically, the system stores cumulative
resource consumption for the electricity sensors, and rate of resource consumption
for natural gas and water sensors.

A python script runs on the Cloud Server, it is scheduled to perform its job everyday
at 7.00am. When it is active, it first accesses the Server Sensor Database to retrieve a
list of sensors being monitored. Then, for each sensor, it checks for the timestamp of
the last data entry in the Server Sensor Database and stores it at Timestamp A. From
this point, the script performs differently according to the type of sensor being
processed.

For cumulative resource consumption readings:

The script adds 1 day to Timestamp A to get Timestamp B, and then retrieves
the reading of the sensor at Timestamp B and Timestamp A respectively. The
difference between the two readings is then stored in the Server Sensor
Database with Timestamp B.

For rate of resource consumption readings:

The script gets Timestamp B in the way, and retrieves all the data entries
between Timestamp A and Timestamp B. It then calculates the time intervals
between adjacent readings and multiplies them by the rates to get the
resource consumption between every time interval. Finally, these values are
summed up and added as a new entry into the Server Sensor Database with
Timestamp B.

During the process described above, the script analyzes whether the electricity
entries or any of the natural gas sensor rate values are negative. It was noticed that
these two sensors contain some inconsistencies in their measurements. If total
electricity consumption for one day is negative, it may be that the sensor is
misconfigured or indicate an error from the AMS Sensor Database. If there are
negative values present for natural gas, then they are often very small (< 1 cubic
meter/per hour) and may be caused by the natural gas backflow in the pipes.

We cannot afford to display negative power useage or negative natural gas values on
our dashboard since it makes data either unrealistic or uncomparable to different
timestamps. If the script notices the negative electricity consumption on a day, it
would replace the value with a “zero” in the server sensor database. If the script
identifies negative rate measurements for natural gas it ignores those time intervals
where negative measurements occur and sums up only intervals having positive
measurements.

Negative values for water sensors have not been recorded yet, most likely because
we only have 1 water sensor recording data. However, if any of the newly added
water meters contain negative entries, they would be replaced with zeros as well.

The server sensor database schema is displayed below. Table SensorValue stores
entries in the following fields: primary ID - the unique number of the table entry -
entry date and time, sensor ID and value. SensorID is an integer number that is
bound with the industrial sensor name - SensorName, and SensorTag - the common
and more colloquial name of the sensor. UnitID field is an integer that refers to the
Unit table binding ID to the real name of the unit.

SensorValue SensorlList
PrimarylD SensorlD Unit
Date_Time | | SensorName | | UnitlD
SensorlD | | SensorTag UnitName
Value UnitiD |

[llustration 2 - Server Sensor Database Diagram

PrimarylD
459
500
501
502
503
504
505
506
507
508
509
510

The above implementation prevents frequent and repetitive use of sensor and unit
names by replacing them with integers in the main table SensorValue. It saves space
and allows additional sensors and units to be added separately.

For a better understanding of the system design, screenshots of the actual tables
with data are included. These tables: SensorValue, SensorList, and Unit are shown in

illustration 3.

DEItEl_TiITIE SensorlD Walue SensorlD SensorMame SensorTag UnitlD

2015-06-17 15:00.00.000 2 0 3 JCL-NAEAD/FCB-01.FEC-04 FM-04 FM-04 3

506-17 19-00-00.000 g 1750 14 JCL-NAE43/FCE-01 VENDOR-72 Energy Total Enerngy-18 il

S015.06-12 15:00:00.000 10 550 15 JCL-MAE43/FCE-01 . FEC04.GM-02 GM02 5
16 JCL-MAE4 3/FCE-01 . FECO7.GM-03 GM02 5

201506-12 19:00.00.000 11 2890

201506-12 19:00:00.000 12 130

2015.06-12 19:00:00.000 13 0 tiE) | Dot

2015-06-12 19:00-00.000 14 D el e

20150908 01:24:21000 15 4397.. : iy S

20150611 16:16:13.000 16 1235. 4 i

201603-23 14:00:00.000 18 280 = i e

201603-23 14:00:00.000 19 0 :] Cublc miters

20160323 14.00:00.000 20 20

Illustration 3 - Left: SensorValue Table, Top Right: SensorList Table, Bottom Right: Unit Table

3.1.2 Server Waste Database

This database stores weight measurements measured on a waste scale system, with
multiple entries in each category of waste for each day.

Data stored on the Waste Scale Computer are stored as text files. AMS workers take
garbage bins to the bottom floor of the Nest where they get weighed. Readings are
processed and stored in text files by a java program. Entries in these text files are
formatted in four columns:

timestamp, weight of waste, units, and waste type.

A python script runs on the Waste Scale Computer, it is scheduled to perform its job
every hour. When it is active, it first scans for new data files in the directory where
new data is saved. If new data files are found, they will be translated into query
commands and executed by the script with new data inserted into the Server Waste
Database. Processed text files will be moved to a subdirectory so that they will be
eliminated from the next file scan. lllustration 4 displays the diagram of the Server
Waste Database.

Design Analysis for AMS Nest Dashboard Page 10

Waste
PrimarylD

Date_Time UnitType

WasteType Weight

: UnitlD

TypelD s TypelD
UnitName

TypeName UnitID

Illustration 4 - Server Waste Database Diagram

Table Waste, containing main data entries is connected to WasteType and UnitType
tables that serve to substitute waste type names and unit names with integers in the
main table, as mentioned earlier, to save space. In illustration 5 we will introduce
screenshots of real table data to present its structure.

46522 2015-08-05 12:56:08.000
46523 2015-08-05 12:57:04.000

PrimarylD Date_Time Weight TypelD UnitiD TypelD TypeName
46512 | 201406-1912:02:01.000 618 1 1 1 T | Rl
ag513 2014-06-1912:0455000 €28 3 1 5 |z | Paper
46514 20140619 120545000 €35 4 1 1 3 i
46515 201406-1912:07:33000 €81 2 1 T |4 Others
46516 2014-06-19 12.07:44.000 18 1 1
46517 20150430 12:3252000 598 1 1
46518 20150430 12:35:36000 615 3 1 :
UntlDr UnitMName

46515 201504-30 124551000 106 1 1
46520 2015-08-05 12:54-00.000 1 1 -
46521 2015-08-05 12:55:20.000 2 1 il g

: 1 3 .3 b

1 1

AN AR A 4

[llustration 5 - Left: Waste Table, Top Right: WasteType Table, Bottom Right: UnitType Table

4 User Interface Design

4.1

Description of the User Interface

The dashboard was required to, first, display metrics that would affect student
behaviour, and second, display graphs and/or lists that would be available to
students for research. Both of these also had constraints in regards to the
consistency of colour choices, images, and how the data was displayed. Given that
UBC building operations had a goal to, “...divert 60% of our operational waste from
the landfill by 2016, and 80% by 2020,” it meant that our project had an opportunity
to address this issue, something that AMS Sustainability was also concerned about,
in order to satisfy our requirement to affect student behaviour. The breakdown has
a slideshow at the top of the web page, defaulting to behavioural feedback for when
students walk by, and then additional tabs relating to the various sensors in the
building. Each tab has a graph with a scaleable time-frame from one week to six
months.

4.1.1 Screen Images

The following illustrates two methods used to satisfy our requirements by displaying
user behaviour (illustration 6) and building metrics for research (illustration 8). The
first is presented as a slideshow, implemented on the home page. The slides contain
one character such as a water bottle with either a:

1. Tip to stay sustainable (Illustration 7), or
2. Feedback indicating how well, in this example, the user has managed to
decrease waste (by increasing recycling).

AMS N UBC AMS NEest DASHBOARD
SUSTAINABILITY

Home

Waste

Food Scaps

Recyclables Containers

Paper ﬂ

Garbage (

) We have recycled 25%
/o_o\{l}? less of Recyclables

Resource Usage [

Electricity |
Water }

Natural Gas =) ‘J
Green Energy © O

About

[llustration 6 - Dashboard display showing percentage-based feedback

Design Analysis for AMS Nest Dashboard Page 12

AMS \ UBC AMS NEest DASHBOARD

SUSTAINABILITY

Home
Waste

Food Scaps

Recyclables Containers

Paper

Garbage
Resource Usage \._./ Turn me Off

Electricity

Water 1: Don’t forget the lights
L. when you leave

Natural Gas

Green Energy

About

[llustration 7 - Dashboard display showing sustainability tip

In regards to the researchable data for students, we established a connection
between the dashboard and our database to display the data with an interactive
graph. This not only allows the user to observe real time data, but also makes
research for long term behaviour possible. A screenshot of the dashboard is shown

in Illlustration 8.

AMS ‘ UBC AMS NEest DASHBOARD
SUSTAINABILITY

e

Waste

Food Scaps

. Organics Collected for the Past Week
Recyclables Containers i

Paper

Garbage

Resource Usage

Electricity
Water
Natural Gas

Amount (kg

Green Energy

About

04
/302016 3/31/2016 4/1/2016 4/2/2016 4/3/2016 4/4/2016 4/5/2016 4/6/2016 4/7/2016
Date

[llustration 8 - Dashboard display showing bar-graph of statistics

Design Analysis for AMS Nest Dashboard Page 13

4.1.2 Objects and Actions

Similar to other easy to use websites, the navigation bar is placed on the left. The
white tabs are the main categories, with coloured tabs as sub-menu’s. Furthermore,
the waste sub-menu are color coded to match the color schemes of the waste bins at
UBC, as shown in Illustration 9, so the user will be able to quickly recognize the
consistency in data types.

Food Scaps

Recyclables Containers
Paper
Garbage

[llustration 9 - How the dashboard’s display colors correspond to existing waste bins

The second half of the webpage contains graphs which displays trends within the
AMS Sensor Database, as shown in illustration 10. The user is able to change the
data range of the graph from one week to 6 months. After the user selects a range,
the graph will load real time data as shown below.

Electricity Used for the Past Week

4000

Amount (Kh)

2000

0
33012016 3312016 4/1/2016 41212016 41312016 41412016 4/5/2016 4/6/2016 41712016
Date

Illustration 10 - Dashboard bar-graph with time range sub-tabs

Design Analysis for AMS Nest Dashboard

Page 14

Illustration 11 shows the final deliverable for this project as a high-level flowchart with component

parts.

Water Energy
Meters Meters
Gas
Meters
WasteScale.py
asteData. txt

Pull Query Regquest

Data Transfer

Cloud Server

Scheduler.py
]

/

N

ﬁndeshou

AMS Sensor Database [Downscaled Sensor Dat

WasteScale D.

/st

Data

Back Eny

L)

[l

Graphs & Tables

SV

o, Using 8% less
electricity than
" last Monday
ata i
Recycling 15% [‘!‘\‘
More Plastic e
Than Last ‘-’V
u“day L)

Day Of the week

<

Front End: Dashboary

[llustration 11 - How the different components of this project relate to each other

The University of British Columbia

Verification & Validation Report

Integrating Various Building Metrics from the AMS Student
Nest into a Presentable Dashboard (Campus + Community
Planning, AMS Sustainability)

Prepared By:
Anna Gudimova
Euan Chow
Meng-Yeng (Dan) Lee
Micheal Griffin

Yuxin (Eugene) Xu
UBC AMS Sustainability

April 8, 2016

The following is a list of actions done by the designers of this project. These tests, checks,
measurements or inspections are explicitly related to items in the Requirements specification.

Verification & Validation for AMS Nest Dashboard

Table of Contents

1 Introduction
1.1 System Overview

1.1.1 Back End

1.1.2 Front End
1.2 Test Approach

1.2.1 Back End

1.2.2 Front End

2 System Testing
2.1 Features to be Tested: Back End
2.1.1 Atomicity Test
2.1.2 Server/Computer Shut Down
2.1.3 Data Correctness Test

2.1.4 Identifying Inconsistencies and Dealing with Them

2.2 Features Tested: Front End

2.2.1 Dashboard Receives no Data from Databases

2.2.2 Dashboard Receives Invalid Data from the Databases

2.2.3 Dashboard Crashes or Webpage Loses Connection

3 System Diagnostics and Modification
3.1 System Diagnostics: Back End

3.1.1 Newest record in log file is an Error message

3.2 System Diagnostics: Front End
3.2.1 Dashboard Displays Error Message

3.2.2 Dashboard Displays Only a Subset of Slides

3.3 System Modification
3.3.1 Back End Modification
3.3.2 Front End Modification

Page 1

1 Introduction

1.1 System Overview

First, we introduce the top level design and schema in this section. Illustration 1 displays a
top-level schema of the design.

The system consists of two main components: back end and front end. Back end resides on
the Canadian Cloud server and contains SQL Server Express 2014 databases and data
processing components - scripts written in Python 2.7. Front end, or the Dashboard, is a
display that provides a user-friendly interface for analyzing and displaying data stored on
the back end.

= | 1
T -~ SalErhat
. E'E"":m" II\»_EIFE'_-) I :
LY ") p o I I
""""" ! w— ' by
L ' '
e Y AMS ! | Dashboard ——
: Datab Data Transfer System Metric
Ocoupancy . eSS _ || [| Calculation &
A~ \ 2 Graphs
L Wiaste)

Illustration 1 - Top-level Design Schema

1.1.1 Back End

Back end integrates AMS sensor data for water, gas, and electricity measurements
as well as AMS Waste Scale data for the amount of paper, recyclables, organic, and
mixed garbage into two SQL databases stored on a Canadian cloud server. Sensor
data for each sensor is pulled from the mirrored backup of the AMS Nest sensor
database, downscaled to one entry per day per sensor and inserted into the Sensor
database on the cloud server. AMS Nest waste data is retrieved from text files
stored on a local AMS Nest computer and inserted into the Waste database on the
cloud server.

1.1.2 Front End

On the front end C# application queries databases stored on the server, performs
light data processing (like addition and comparison) and displays the data on our
webpage for the dashboard. This screen is located on the bottom floor of the NEST
next to the AMS Sustainability center.

1.2 Test Approach

In this section we will describe test approaches that we used for our system. We will also
mention some risks that we foresee occurring throughout the lifetime of the system.
Actual testing and risk mitigation strategies will be described in the following sections in

more detail.

1.2.1

1.

2.

1.2.2

Back End

We want to test atomicity when attempting a query.

a. le. what happens to the data being inserted if the connection is
suddenly shut down or some other interruption happens. Will
information be inserted with data corrupted/partial data or will the
guery not be executed at all.

We can predict that at some point in time either our Canadian cloud server
or AMS Nest local computer may shut down or restart. Therefore, we need
to make sure our scripts run after both computers reboot.

We have to test the correctness of both Server Sensor Database script and
script for Waste Scale Database stored on the AMS local computer,

a. lLe. we need to see that queries insert correct data and report
errors in the log files properly.

We have to ensure data inconsistencies from the original mirrored AMS
sensor database are not transferred to our database.

a. Negative values, inconsistent measurement intervals, “dates from
the future”, i.e. date values exceeding current date.

Front End

We want to make sure the Dashboard doesn’t crash if it gets no
information from the databases. In that case, the Dashboard only displays
informative slides,

a. le. slides containing general recommendations for energy saving

and no actual data.

If dashboard receives invalid (negative) values, even after we took every
effort to eliminate these while integrating data (it still may happen as a
result of later modifications) we need to make sure the invalid data is not
displayed and only informative slides appear on the screen until the issue is
fixed.
There is a possible risk of the dashboard losing Internet connection or
crashing. This, however, is presumed to be immediately noticeable and we
will address the risk associated with this later.

2 System Testing

The main idea for performing tests is to confirm that both back end and front end have expected
and correct functionality. Thus, we assume that tests can help us find and eliminate program
errors, however certain risks are inevitable, even though we layout the best approach for

mitigation.

2.1 Features to be Tested: Back End

2.1.1 Atomicity Test

There is a risk that the scripts responsible for data transfer get interrupted by an
unexpected event, e.g. computer power down, internet connect down, etc. MS SQL
database feature atomicity, which is a property that ensures operations in our
database either happen all at once, or nothing occurs. It prevents updates to the
database occurring only partially when operations are interrupted. To confirm that
atomicity is enforced on databases on the Canadian Cloud server, we ran long query
commands that insert and delete multiple entries from the database. As the query
commands are being processed, we terminated the process for the query execution
and confirmed that no data had been inserted or deleted, preserving the atomicity of
the system.

2.1.2 Server/Computer Shut Down

There is a risk that the Canadian Cloud server or AMS Nest local computer containing
text files with waste entries may shut down or reboot. If this happens, we must ensure
that our scripts run again and update the databases on the server for the time
computers were down. In order to guarantee that the scripts run automatically after
reboot we put the shortcut of the batch file (that runs the script) in the Windows
Startup folder and check whether it runs after we restart the server. Script pulling
information from the AMS sensor database automatically retrieves data for the
number of days passed since the server went down. The Waste Scale script
automatically translates text files into insert instructions if there is any data files
waiting to be sent.

2.1.3 Data Correctness Test

The data transferred from the AMS Sensor Database to the Canadian Cloud server gets
processed before they are inserted. The following ensures the calculation process is
done correctly.

First, we randomly selected multiple data entries from the Canadian Cloud server, and
compared them with the raw data stored on the AMS Sensor Database using Excel. If

results calculated by Excel matches, then the correctness of data is confirmed. The
following illustration is a screenshot of the Excel comparing process.

SN v (0 K f| =SUM(EZ:E50)

4 E © D E
43 | JCL-NAE40/FCE-01. FEC-04. F-04. Present Value 2016/4/4 19:00:00 0. 143253¢|1iters—per-second 257. 85612
44 |JCL-NAE40/FCE-01. FEC-04. FM-04. Present Value 2016/4/4 19:30:00 0. 1432382|1iters—per-second 257. 82876
45 |JCL-NAE40/FCE-01. FEC-04. FM-04. Present Value 2016/4/4 20:00:00 0. 1431981 |liters—per-second 257. 79658
46 | JCL-NAE40/FCE-01. FEC-04. FN-04. Present Value 2016/4/4 20:30:00 0. 143241 |1iters—per—second 287, 8338
47 | JCL-NAE40/FCE-01. FEC-04. FN-04. Present Value 2016/4/4 21:00:00 0. 143187|1iters—per—second 287, 7366
48 | JCL-NAE40/FCE-01. FEC-04. FN-04. Present Value 2016/4/4 21:30:00 0. 1432272|1iters—per—second 257. 80896
49 JCL-NAE40/FCE-01. FEC-04. FN-04. Present Value 2016/4/4 22:00:00 0.1431999|1iters—per—second 257. 75982
50 JCL-NAE40/FCE-01. FEC-04. FN-04. Present Yalue 2016/4/4 22:30:00 0. 1432054 |1iters—per—second 257. 7697
51 PointName ITCDateTine AdctualValue |InitOfNeasureName |Cunsumption
52
53
54 SensorlName |Data Time ‘Valuﬁ |SensorTa |Sum Total |
55 |JCL-NAE40/FCE-D1. FEC-04. Fi—04 | 2o18/4/¢ 23:30:00] 12586, 26|FN-04 |=sumiEz:E50) |
54 SensorName |Data Time ‘Value |SensorTa |Su.m Teotal
55 JCL-NAE40/FCE-01. FEC-04. FI-0d | z016/4/¢ 23:30:00] 13386, 26[FH-04 | 12386. 26236

[llustration 2 - Comparing data using Excel

2.1.4 Identifying Inconsistencies and Dealing with Them

Main data inconsistencies that threaten data integrity are negative data entries and
unrealistic data that may appear as a result of sensor misconfiguration. lllustration 3
demonstrates what data entries stored in the AMS sensor mirrored database may look
like. For gas meters - negative values caused by gas backflow; energy meters with
sudden cumulative energy value drop by almost half leaving the possibility for large
negative energy use for that day; and water meters with measurements “taken” farin

the future - in 2100.

PointMame UTC

| JCL-NAE43:JCL-NAE43/FCE-01 FEC-04 GM-0Z Present Value
JCL-MAE43:JCL-MNAES3/FCB-01 . FEC-04 GM-02 Present Value
JCL-NAE43:JCL-NAE43/FCB-01 . FEC-14 GM-02 Presert Value
JCL-MAE43:JCL-NAE43/FCB-01 . FEC4 GM-02 Present Value

PointName

BIS-APPADX-PRD:JCL-NAE43/FCB-01 VENDCOR-16 Energy Total Present Value
BIS-APPADX-PRD:JCL-NAE43/FCB-01 VENDOR-16 Energy Total.Present Value
BIS-APPADX-PRD:JCL-NAE43/FCB-01.VENDCOR-16 Energy Total.Prezent Value
BIS-APPADX-PRD:JCL-NAE43/FCB-01 VENDOR-16 Energy Total Present Value

PointMame

DateTime

| 2015-05-21 09:40:00.000
201505-21 09:50:00.000
2015-05-21 10:00:00.000
2015-05-21 10:10:00.000

UTCDate Time
2015-11-19 17:30:00.000
2015-11-19 18:00:00.000
2015-11-19 18:30:00.000
2015-11-15 15:00:00.000

UTCDate Time

ActualValue
04874005
40.5304456
-0.5035967
8815534

ActualValue
267110
267120
13977
13577

ActualValue

BIS-APPADK-PRO:JCL-MAE40/FCE-01.FEC-04 FM-D4 Present Value

¢ 201604407 03:30:00.000

: 0.1434274

BIS-APPADK-PROJCL-NAE4D/FCB-01 .FEC-04. FM-04 Present Value
BIS-APPADX-PRD:CL-MAE4D/FCB-01 FEC-04. FM-04 Present Value
BIS-APPADX-PRO:JCL-MAE40/FCE-01. FEC-04 FM-04 Present Value
BIS-APPADX-PRO:JCL-NAE40/FCB-01.FEC-04 FM-04 Present Valus

2016-04-07 04:00:00.000
2016-04-07 04:30:00.000
2100-03-06 09:00:00.000
2100-03-06 09:20:00.000

0.143516
01434323
1.671767
1.71802

UnitCf Measure Name

cubic-metersperhour
cubic-metersper-hour
cubic-metersperhour

cubic-metersperhour

UnitOfMeasureMame
kilowatt-hours
keilowatt-hours
kilowatt-hours
kilowatt-hours

UnitOf MeasureName
litersper-second
liters-persecond
literspersecond
lterspersecond

liters-persecond

[llustration 3 - Top: Gas Meter Negative Values, Middle: Sudden Energy Jump, Bottom:

Water Measurement Dated by 2100 Year

Our strategy is to turn all the negative values to “zero” for energy measurements,
ignore intervals with negative rate when calculating the total gas consumption for the
day, and retrieve only those dates that are smaller than the current date to avoid
“measurements from the future” for water sensors.

2.2 Features Tested: Front End

2.2.1 Dashboard Receives no Data from Databases

When the dashboard is not presented with any information, the graphs will not
load, and there will be no injunctive/normative slides indicating student
behaviour in the Nest. Although this may seem like a problem, this satisfies
our requirement to be atomic by avoiding stagnation of the display, showing
old data irrelevant to students.

As an example, if for one week the dashboard was unable to connect to the
database, this might mean that the dashboard would be displaying how well
students saved energy from the previous month, when in reality, this data is
one week old. Our system will prevent any information from being displayed
until a live connection has been made, preventing this issue.

2.2.2 Dashboard Receives Invalid Data from the Databases

Should the dashboard be given negative values from the database, it will
register this as an invalid data type, and prevent any injunctive feedback (like
how much energy we saved) from being displayed. This too prevents users
from receiving invalid information and being misinformed by corrupt data.

Instead of preventing any slides from showing, the slideshow is filled with two
different images. Some that show general sustainability information like,
“Unplug your electronics”, and others that give specific feedback using the
database, “You have saved 5% of your electricity usage since last Monday”.
The dashboard simply prohibits any slides with inaccurate injunctive
information from being displayed, and only displays the slides with general
information.

2.2.3 Dashboard Crashes or Webpage Loses Connection

Lastly, when the dashboard loses connection to the internet, or it crashes
itself, the system becomes unresponsive, which is a potential risk especially if
nobody is interacting with the display. If the users of the Nest often interact
with the dashboard, then it is likely that someone will indicate that the system
is not working.

3 System Diagnostics and Modification

In this section we describe how the end user of the system should interpret messages they see in
log files or system behavior in general and give advice on how to address the issues that may arise
during the system use. We also give recommendations on how user may modify the system to add
new sensor type to it or new graph to the display.

3.1 System Diagnostics: Back End

UBC students, our target audience for the system, may not directly interact with the back
end data stored on the databases, and it may not be immediately obvious to them that
something has gone wrong. The only way for students to identify malfunctioning is by
noticing that behavior on the front end has changed, i.e. dashboard displays either nothing
or only a subset of images it should display. Another group of the target user is our client,
the AMS Sustainability officers, who have access to the the Remote Desktop of both the
Canadian Cloud server and the Waste Scale computer, and are able to check the log files.
Shortcuts for log files are created on the desktop of both devices.

3.1.1 Newest record in log file is an Error message

On the Canadian Cloud server, if the newest log entry is an error, it means that the
python script cannot connect to the AMS Sensor Database. Possible causes are:

Canadian Cloud Server is not connected to the Internet
User should right click on the Network Connection Icon on taskbar
and choose the Troubleshoot Problems option. If the problem
remains, reboot the server. If the problem remains after the
reboot, user should contact Canadian Cloud client service to
resolve the issue.

AMS Sensor Server is Down or Connection is Lost
User should contact UBC IT to resolve the issue.

On the Waste Scale computer, if the newest log entry is an errors, it means that
the python script cannot connect to the Canadian Cloud server. Possible causes
are:

Waste Scale Computer is not connected to the Internet
User should right click on the Network Connection Icon on taskbar
and choose the Troubleshoot Problems option. If the problem
remains, reboot the computer. If the problem remains after the
reboot, user should contact UBC IT to resolve the issue.

Canadian Cloud Server is Down or Connection is Lost

User should check if the Cloud server is booted by logging in to the
Canadian Cloud account page at
https://www.cacloud.com/panel/index.php?/clientarea/ and go to
the Services tab, then click on Vancouver SSD. If the status column
does not display “Active”, go to the device setting page by clicking
on the Server name and turn on the Server. If the status column
displays “Active”, use remote desktop to access the Cloud server to
perform a reboot.

3.2 System Diagnostics: Front End

We will analyze what may go wrong with the front end performance here and see what
can be done to fix the issues that may occur.

3.2.1 Dashboard Displays Error Message

Server Error in /' Application.

The network path was not found
Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code
Exception Details: System ComponentModel Win32Exception: The network path was not found

Source Error:

was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace beloy

[llustration 4 - Error message on Dashboard
The Dashboard will display an error message if it is not able to connect to the
Canadian Cloud Server. Possible causes are:

Dashboard Computer is not connected to the Internet
User should right click on the Network Connection Icon on taskbar
and choose the Troubleshoot Problems option. If the problem
remains, reboot the computer.

Canadian Cloud Server is Down or Connection is Lost
User should check if the Cloud server is booted by logging in to the
Canadian Cloud account page at
https://www.cacloud.com/panel/index.php?/clientarea/ and go to
the Services tab, then click on Vancouver SSD. If the status column
does not display “Active”, go to the device setting page by clicking
on the Server name and turn on the Server. If the status column
displays “Active”, use remote desktop to access the Cloud server to
perform a reboot.

3.2.2 Dashboard Displays Only a Subset of Slides

There is a number of possible reasons for this behavior that we will list below:

https://www.cacloud.com/panel/index.php?/clientarea/
https://www.cacloud.com/panel/index.php?/clientarea/

Waste Scale Computer is Down or Connection is Lost
In this case messages about the waste consumption level will be
missing on the screensaver. The user should check whether the
AMS Nest local computer is down or the script is not running
anymore.
If the computer is down please reboot it. Check if both the
WasteScale software (A java program generating text files with
waste data) and the script sending data to server waste database
are running. If not, run them to activate data transfer process.
Check the log files to make sure there has been no errors lately.

Mirror Database is not Accessible on the UBC Server or Connection to It Is

Lost
In this case messages about energy, water, and gas consumption
level will be missing on the dashboard screensaver. The user
should check whether they can connect to the mirror AMS Sensor
database manually (i.e., that credentials are still valid and TCP port
is open for our server access). If not, contact project coordinators
and UBC IT department to receive access back. If, however, the
connection exists, check whether there are entries for energy,
water, or gas sensors for the latest dates and whether they are
valid, i.e. not negative and realistic. See the log files to make sure
there has been no errors in the system lately.

Canadian Server is Down or Connection to It Is Lost
In this case neither sensor nor waste consumption level data will
be displayed, only informative slide set with general
recommendations for the public will be seen on the Dashboard
screensaver. User should check if database credentials have been
modified and try to connect to the cloud server manually. If they
succeed the next step should be checking log files and whether
data for the latest days exists at all.

Additionally, one general recommendation for debugging is to check if
graphs with detailed information can be seen and if they contain entries
for the last days.

3.3 System Modification

3.3.1 Back End Modification

When adding readings from a new type of sensor that is not in the AMS Sensor
database.:
@ User needs to create a new database on the Canadian Cloud server using
either query commands or the GUI on Microsoft SQL Management Studio
for new database creation. For consistencies, structure for the new

database should be similar to the server sensor database or the waste
scale database.
@ |If the data source is a database
O Write a query (SQL file) to calculate the total value per day
measured by this sensor.
O Write a script to run this query command regularly to update the
data on the new database.

@ If the data source is data files on a computer
O Write a script to 1) check if new data files exist, 2) translate the
datafiles into query commands, and 3) update the data on the new
database by sending these query commands to the new database.

When adding readings from a new sensor from the AMS Sensor database to the
server sensor database on the Canadian Cloud server, user should follow these
steps:

@ If the new readings are measured in units that do not exist in the Unit
table, User needs to add new units in: tblUnit table

@ Add the manufacturer's name of the sensor in: tblSensorList

@ If this sensor is of a new type, i.e. not electricity, or natural gas, or water
sensor, then user needs to write a query (SQL file) to calculate the resource
consumption per day measured by this sensor.

@® Modify the python script so that it uses a correct SQL file (either the SQL
for electricity, or natural gas, or water sensor), or the new SQL file when
processing readings from this sensor.

@® Manually add a new entry to the server sensor database for this sensor
with a timestamp, indicating the date of this sensor’s earliest
measurement on the AMS Sensor database.

Note: source code for the scripts are located in following directives.
@ Canadian Cloud server
O Script - C:\Users\Administrator\Desktop\CaCloud Script\Script\
O Query - C:\Users\Administrator\Desktop\CaCloud Script\Query\
@® Waste Scale computer
O Query - C:\Users\student\Desktop\Capstone Waste Scale v1.0\

3.3.2 Front End Modification

When adding a new tab to the dashboard, user should follow these steps:

@ Add an additional List item in Navigation class tag in every .aspx file along
with the appropriate class depending whether if it's a sub-menu tab or a
main category tab.

@ Edit a preferred content inside the main class tag.

@® Make sure to include the appropriate class to every other tags to have the
same tab structure.

When adding additional graph controls, the user should follow these steps:
@ Add an additional List item in ControlButton class tag with an additional
TypeFive class tag

ass="ChartControl”
1i class="TypeOne">0One Week
class="TypeTwo">0One Month</1i

"»Three Month

class="TypeThree
class="TypeFour”>5ix Month

@ Add TypeFive as a new function in the jQuery file so it will change graph
content on click

@® Copy the whole SixMonth tag and paste it underneath SixMonth tag.
Change the tag to an appropriate name. Make sure it is the same as the

Solid” Heigl

" XValueMember="DATE_DATE_TIME" YValueMembers="Sum Weight”

Areal” AlignmentStyle="A11"
g)"

tle Name="Title1l” Text="Organics Collected for the Past 3 Months” BorderDashStyle="NotSet” Font="Microsoft S. erif, 1ept”

onnectionString="f5 Connecti caleDBCol ionstringl J¥" SelectCommand

@ Edit the SQL query in the new chart tag, as well as the query string name
and the graph title.

When adding additional slideshow from new data source, the users should follow
these steps:

@ Set the number of slide to show for.
= (int)ViewState["ImageDis

== 8)

1
1

_(.

ElectricalData(1);
ViewState["ImageD

o= e
ElectricalData(i);
ViewState["ImageDi

@ Add a new string which contains the database name as well as a new string
containing the sql querying the data.

g AMSSensorDB = null;
o WasteScaleDB =

lon connection;

nd command;

gz Elecsgl =

g GEsgl = r
NGsql = nu’

o Watersqgl =

gz FoodSsgl =

» Othersgl]
Papersql = [1;
Recyclablessql

@ Copy and paste the first if statement
@ Simply change count to the following number of the last case
@ Change the datastring used to query the data

connection.Open();
command = ne C (Elecsgql, connection);

dataReader = command.ExecuteReader();
le (dataReader.Read())

h.Round(C .ToDouble(dataReader.GetValue(®)))).ToString();

Determine the test cases and add new image to the folder directory

th.Round ((t.ToDouble(dataReader.GetValue(8))) >=

Labell.Text = "M " + result +
Labell.visible =

Image2.ImageUrl =

Image2.Width =

Image?.Visible

Labell.Text = "We : + result +
Labell.Visible £

.ImageUrl = "

Width = 27

.Visible =

When the layout of the file needs to be configured, the user should follow these
steps
@ The style file is located in the styles folder
@® Follow the comment in the file, find and section the user is looking to
change

Project Continuation

The following is a list of suggestions for project continuation by our client
1. Install sensors which would record the number of people in the building
a. Calculate average resource consumption per day per person.
2. Add more customization to the dashboard
a. Users can select the type of graph to display the data
i. Line graph - as an alternative to bar graphs for research
ii. pie chart - to separate major categories of waste
b. Customize data range
i. E.g.from March to August
3. Add more interaction with the user:
a. The users may be even more involved with the idea of waste sorting and energy
4. |If users are given an opportunity to interact with the touchscreen display to see raw data
and graphs, they would be given an opportunity to play a really simple game providing
even more user behaviour and reinforcing sustainable habits in the Nest.
a. This idea fits with another Capstone project where students are suggested to
play a waste sorting game that helps them to remember how to sort waste.

Promotional Video

The video can be located at the following two addresses.
Capstone Youtube Account:
e https://www.youtube.com/watch?v=_6S30HdeQZE&index=9&list=PLjFm8PBGOOF9tt3u
-yeNG6A0G68s8YcHh
Micheal Griffin (Project Leader)
e https://www.youtube.com/watch?v=2x698BrufCY
The video has also been delivered as a hard copy to our client.

