
 UBC Social Ecological Economic Development Studies (SEEDS) Student Report

Scott Hazlett

ION API for Electronic Signage Final Report

EECE 490L

April 08, 2014

1073

1591

University of British Columbia

 Disclaimer: “UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their 
opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a 
student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these 

reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned 
in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report”.  



 
 

 

LETTER OF TRANSMITTAL 

Scott Hazlett 
UBC Computer Engineering 
2356 Main Mall 
Vancouver, BC.  V6T 1Z4 

April 9th, 2014 

Vincent Wong, Technical Supervisor 
Department of Electrical and Computer Engineering 
2332 Main Mall 
Vancouver, BC.  V6T 1Z4 

 

Dear Professor Dr. Vincent Wong, 

Enclosed is the project report titled ION API for Electronic Signage that was commissioned in 
January 2014 to integrate the UBC ION metering data with UBC electronic signage. 

This report discusses the implementation of ION API as a web-based interface using HTTP 
queries.  This report is restricted to considering meter readings of only electricity consumption.  
As well, this report assumes usage patterns that are not exposed to the public. 

The main findings on the report are: 

1. The ION API serves as a protective layer to the ION database by preventing possible 
malicious access and by lowering the load on the database by hosting cached results 

2. The ION API lays the groundwork for developing upstream integration with other platforms 
for consuming data as well as for developing downstream integration with other producers 
of data 

I would like to thank Wilson Lo, Senior Programmer Analyst for Communication and 
Collaboration Technologies, for being instrumental in forming key design decisions and 
providing valuable technical assistance.  I would also like to thank Jamil Rhajiak, UBC 
Communications Services Coordinator, who has met regularly with myself to help assist with 
the integration of this project’s data with UBC signage. 

Finally, I would like to sincerely thank you for having the opportunity to work on this project. 

 

 

Scott Hazlett 
Computer Engineering student 

Encl.  



 
 

 

 

 

 

University of British Columbia 

Electrical and Computer Engineering 490L 

 

ION API for Electronic Signage 
Final Report 

 

 

 

 

 

 

 

 

 

 

 

Scott Hazlett 

 

With special mention 

Wilson Lo 

Jamil Rhajiak 

 

8th April 2014 

 



 
 

ii 
 

ABSTRACT 

This report investigates a practical approach to integrating a database with UBC’s Enterprise 

Cool Sign infrastructure that powers all campus electronic signs.  UBC’s ION database collects 

real-time electricity usage data for all buildings on campus but the data is relatively 

inaccessible.  This project designed and deployed an ION database API that serves to channel 

this real-time data to electronic signs across both university campuses.  The ION API is 

underpinned by an Apache webserver running Perl CGI scripts that service HTTP GET requests 

with URL parameters.  The ION API was designed to reduce load on the ION database by 

caching previous search results. Furthermore, the ION API attempts to present the raw data in a 

graphical way that is appealing to passerby’s so as to affect societal change.  Due to ongoing 

restructuring in the ION database, this project worked with static file of exported data from the 

ION database.  Care was taken to read the database row by row to closely mimic the live 

database.  The ION API was a success deployment allowing for two forms of operations: 

comparing electricity consumption for one building for the 24 hour period preceding, and 

another providing inter-building simple comparisons.   



iii 
 

 

TABLE OF CONTENTS 

ABSTRACT .........................................................................................................................................ii 

LIST OF ILLUSTRATIONS................................................................................................................... iv 

GLOSSARY ......................................................................................................................................... v 

1. INTRODUCTION ....................................................................................................................... 1 

2. EQUIPMENT AND METHODOLOGY ......................................................................................... 2 

Personnel .................................................................................................................................... 2 

Cool Sign Version 4 to 5 .............................................................................................................. 2 

Cool Sign and Data Watcher ....................................................................................................... 3 

URL Parameters and XML Results ............................................................................................... 4 

Handling the Present ION Database ........................................................................................... 5 

3. ION API DESIGN DECISIONS ..................................................................................................... 6 

Model-Controller Design Pattern ............................................................................................... 6 

Reactive API with Apache and CGI .............................................................................................. 6 

Perl XML Library .......................................................................................................................... 6 

Local Caching and Calculations ................................................................................................... 7 

4. ION API IMPLEMENTATION ..................................................................................................... 8 

Generating the Cached Result .................................................................................................... 8 

Parsing the ION Database Row by Row .................................................................................... 10 

Dealing with ION Database Corner Cases ................................................................................. 10 

Templates .................................................................................................................................. 11 

5. PROJECT CONCERNS .............................................................................................................. 13 

Concurrent Access .................................................................................................................... 13 

Effective Communication and Visualization ............................................................................. 13 

6. RESULTS ................................................................................................................................. 15 

7. CONCLUSION ......................................................................................................................... 16 

 



iv 
 

LIST OF ILLUSTRATIONS 

Figure 1: System Diagram of Integration of ION API with UBC Signage Infrastructure ................. 3 

 

  



v 
 

GLOSSARY 

API: Application Programming Interface is the published abilities of a used program to its users. 

CGI: Common Gateway Interface is a way for users to connect to a URL and do more than HTTP 

is designed to do by launching an environment, say PHP or Perl, which can then run a script as if 

the script was launched locally on the machine. 

CSV: Comma-Separated Values file stores data structured along rows by separating them with a 

carriage-return character and along columns by separating them with the comma character.  

CSV files popular because they are easy for programs to process. 

kWh: kiloWatt hour is a measurement of electrical work and represents the amount of 

electricity needed to power a 100 Watt bulb for 10 hours. 

SIS name: SIS names can be looked up under the details tab of a building in Wayfinding UBC 

and uniquely identify a given UBC buildings.  Most UBC buildings have an SIS name although the 

University Services Building is a notable exception. 

XML: eXtensible hypertext Markup Language is a popular text-based markup language that 

allows for simple transmission of structured data.  One popular example of XML usage is an RSS 

feed. 



 
 

1 
 

1. INTRODUCTION 

This project investigates an optimal approach to delivering meter data to UBC Signage.  The ION 

API for Electronic Signage project proposes to adapt data collected about campus electricity 

usage and present it on campus digital signs in a form that is consumable within the 6-second 

attention span of passing people. 

Visitors to UBC as well as the local community invariably pass by many of these signs in any 

given day.  I feel that this is a good opportunity to contribute towards lasting campus 

behavioural change through awareness of resource consumption. 

This project works with existing UBC signage infrastructure to allow streaming of consumption 

data to any sign.  As well, this work lays the groundwork for downstream integration with 

personal mobile devices as well as upstream integration with additional sources of data. 

This report first provides background on the existing UBC infrastructure for electronic signage 

and the Cool Sign Enterprise software that powers the signs.  Then this report transitions into 

the deployment of ION API and the primary design decisions.  Further along, this report reviews 

some implementation highlights including providing for multiple behaviour based on templates 

and soft.  Finally, this report concludes with the possibilities of upstreaming and 

downstreaming as well as some achievements and concerns. 

  



2 
 

2. EQUIPMENT AND METHODOLOGY 

The following subsections will cover existing infrastructure as well as instrumental personnel. 

Personnel 

Working with Wilson Lo, Senior Programmer Analyst for Communication and Collaboration 

Technologies, and Jamil Rhajiak, UBC Communications Services Coordinator, we have deployed 

dynamic content to display nodes using the Cool Sign infrastructure.  Because a primary goal of 

this project was to integrate well with existing infrastructure, we did not consider alternate 

signage software. 

Cool Sign Version 4 to 5 

However, UBC is currently undergoing an upgrade from Cool Sign version 4 to version 5.  Most 

notably, Cool Sign version 5 will now offer operators the option to display a website natively on 

signs as an alternative to manually creating content as was necessary with version 4.  This is a 

big incentive for operators to shift towards dynamic content on a website.  A unified front can 

be easily displayed on multiple platforms, for example, mobile devices and web browsers. 

UBC Signage enjoys a wide audience and so its security is accordingly well-guarded.  Thus, it 

was a natural choice to deploy the ION API on a Virtual Server Service provided by UBC IT 

Services.  This keeps the entire system protected behind the same virtual network.  The system 

is specifications are 1 CPU, 2 GB RAM, 32 GB Tier 1 System Disk, RHEL 6 OS.  This accrues an 

annual operating cost of about C$125 per year from the ECE department. 



3 
 

Cool Sign and Data Watcher 

Cool Sign in an enterprise software that UBC licenses to display contents on electronic signs 

across both campuses.  Figure 1 shows how the Cool Sign Data Watcher periodically queries 

sources of information, in this case the ION API, used for broadcasting dynamic content to UBC 

electronic signs.  The Data Watcher is configured by a Data Watcher configuration file which is 

very flexible and suits this project: 

1. We can configure the Data Watcher to connect to any URL 

2. We can configure the Data Watcher to handle an XML-formatted result 

3. We can configure the periodicity of updates 

 

Figure 1: System Diagram of Integration of ION API with UBC Signage Infrastructure 



4 
 

We have created a dedicated Data Watcher that queries the ION API via HTTP and receives 

XML-formatted data on the electricity consumption of a building.  All results can then be 

automatically streamed to any UBC display node through the Cool Sign infrastructure.   

URL Parameters and XML Results 

The Cool Sign Data Watcher can query in different ways.  A common way is to query the data 

source using an HTTP GET request to a URL with parameters.  Similarly, Cool Sign can receive 

data in various formats.  We chose XML-formatted results because there are many other nodes 

already configured in this fashion, and because XML-formatted data is easily processed by most 

applications.   

The following shows the XML structure that we expect after querying the ION API.  The URL for 

the ION database is not currently registered with the DNS server and so it is directly accessed 

by IP address. 

Content-type: text/html  

<item> 

    <Block> 

        <BldName>USB</BldName> 

        <Consump24>2026</Consump24> 

        <Date>07/04/2013</Date> 

    </Block> 

</item> 

Here, the XML entries have been indented for clarity but should actually be on one long line to 

not break compatibility with the Data Wacher.  This XML reply states that the University 

Services Building “USB” consumed 2026 kWh in the past calendar day. 



5 
 

Handling the Present ION Database 

The ION database is currently undergoing a migration in naming and reordering to better reflect 

the current deployment of meters with physical buildings.  Each building may have smaller 

buildings for which the same department is responsible for.  Thus, many buildings have multiple 

meters.  For example, MacLeod is responsible for Rusty Hut.  

This project has focused only on kWh readings of energy consumption as it is more widely 

deployed.  As well, UBC is in the process of migrating completely from steam to hot water and 

so there is flux with those meters. 

The ION database can export data for a given period, for example one year and multiple 

buildings, into CSV format.  This project has been using such a file for development.  It contains 

the readings for the calendar year of 2013 across 14 meters which aggregate to 9 buildings.  

Each reading is taken at an interval of 15 minutes.  We extracted the kWh columns for each 

meter to shorten the file size. 

 

  



6 
 

3. ION API DESIGN DECISIONS 

The following sub headings will discuss the design and implementation of the ION API. 

Model-Controller Design Pattern 

This project used a Model-Controller design pattern to separate decision making from the 

database access.  IonController.pl is the URL-accepting interface and only performs 

basic sanity checks and sanitization on the URL parameters.  It then dispatches the work to 

IonModel.pm. 

IonController is a Perl script that can be called directly and has a .pl extension, 

meanwhile IonModel is a Perl module that contains a constructor and member methods and 

has a .pm extension.  The former is analogous to a main method in C or Java, while the latter is 

analogous to a software library. 

Reactive API with Apache and CGI 

The ION API is a reactive host in that it does not store any state other than previously cached 

results.  This is easily implemented with the Common Gateway Interface “CGI” which allows for 

URL queries to run local scripts in various languages, for example, PHP, Perl, and Python.  This 

project choose Perl as it performs well with per-line file processing.  In conjunction with this, we 

chose Apache as the webserver because it is widely deployed and easy to setup. 

Perl XML Library  

This project uses the Perl Module XML::Generator to generate XML-formatted replies.  We 

hope to reduce the number of programmer errors by re-using proven software libraries. 



7 
 

Local Caching and Calculations 

An important design decision was to have all the calculations be performed on the ION API host 

so that no unnecessary load is placed on the Cool Sign DataWatcher.  Similarly, The ION API will 

cache past results to serve requests faster and to alleviate the burden on the ION database. 

  



8 
 

4. ION API IMPLEMENTATION 

The following subsections cover interesting implementation details. 

Generating the Cached Result 

The Perl code illustrating the core functionality for a query is shown below.  This subroutine will 

generate the cache file for a query.  If it does not already exist, it will query the ION Database to 

generate the cache file.  Otherwise, it does not contact the ION Database. 

sub execute() { 

  my $class = shift; 

  # This will generate the regex used for the starting 

  # row (smallest reading) to the end row (largest reading) 

  # from which we will take a delta 

  $class->generate_regex_for_time_bounds(); 

 

  # This will perform the mapping from SIS name 

  $class->lookup_ion_name_with_sis_name(); 

 

  # This will assign $class->{'_cache_filename'} 

  $class->generate_cache_filename(); 

 

  # This will create the cached result if it does not 

  # already exist.  If it exists, no need to create it. 

  # Otherwise, it reads this from the 

  # ION database line-by-line and saves the result 

  # to the designated cache file 

  $class->generate_cache_file(); 

 



9 
 

  # Now the client can call get_reply_string(); 

} 

First a regular expression is formed for the starting and ending timestamps that we are 

interested in.  Next, we look up the relevant meters based upon the SIS name for the UBC 

building.  

With this information, we can now generate the deterministic name of the cache file that has 

this information.  If the file is not found, it will query the database for the relevant result and 

save it in XML format as a cache file. 

After a return from this subroutine, a called to the following code will return the XML-

formatted result.  It merely reads in the entire file and pipes it to the client. 

sub get_reply_string($) { 

  my $class = shift; 

  open CACHE, "<$class->{'_cache_filename'}" or die "Could not open cache 

file $class->{'_cache_filename'} for reading"; 

  while (<CACHE>) { 

    print $_; 

  } 

  close CACHE; 

} 

While this algorithm performs well with a single access, in its present state it can have 

concurrency issues which are discussed in section   



10 
 

PROJECT CONCERNS 

This subsection will consider some concerns. 

Concurrent Access. 

Parsing the ION Database Row by Row 

Each row corresponds to one 15 minute window and one sample.  The first six rows and five 

columns for this file are shown below.  There has been minor editing for clarity. 

                      , USB_641, Comp_sci_2,Macleod_312, Rusty_Hut_307,… 

Timestamp             ,     kwh,        kwh,        kwh,           kwh,… 

01/01/2013 12:15:00 AM, 9591521, 436197.75  ,         0,    4157702.75,… 

01/01/2013 12:30:00 AM, 9591565, 436257.0938,         0,    4157731.5 ,… 

01/01/2013 12:45:00 AM, 9591608, 436316.4375,         0,    4157760.5 ,… 

01/01/2013  1:00:00 AM, 9591652, 436375.875 ,         0,    4157790   ,… 

To calculate the consumption for a one hour period, we took the difference between the 

reading at the starting time, say 1:00:00AM, and the reading at one hour later, say 2:00:00AM.  

Each sample interval is 15 minutes, and so a total of 5 rows are evaluated. 

Dealing with ION Database Corner Cases 

It became apparent that some entries were not usable, for example they were blank or 0.  A 

design decision in this project was to fail gracefully.  If there was a valid reading at both the 

desired start and end times, we simply took the difference.  For case of summing an entire day, 

it was possible that the end point might be unavailable but a suitable row nearby would be 

workable.  Thus, the algorithm evolved into first looking for the starting row by looking at time, 

then continuing iteration through rows until a suitable kWh on that row was obtained, that is, a 

non-zero kWh reading.  This will be our lower bound kWh reading.  Then, we continue iterating 

through rows until the ending time is encountered and we retrieve that row’s kWh reading as 



11 
 

our upper bound.  A subtle point is that at each row we need to keep track of the latest valid 

kWh reading because it is entirely possible that the reading on the final line is not usable. 

This way, we only have to traverse forwards. 

There is also the case of overflow as these meters all overflow at 1010.  First we have to make 

sure that Perl variables can handle numbers this large.  Running the following code at a Linux 

prompt will show what the current system uses for maximum float values in Perl: 

$ perl -MPOSIX -le 'print POSIX::FLT_MAX; print POSIX::FLT_MIN' 

3.40282346638529e+38 

1.17549435082229e-38 

Next, we need to detect overflow.  While iterating to the end kWh reading, for every valid kWh 

reading that we read, we ensure that it is a larger number than the previous valid reading.  If it 

turns out to be a smaller number, and non-zero, then we validate that it is at least smaller by 

more than 10(10−1) = 109.  More specifically, in code: 

if ($latest != 0  

    and ($latest - $previous + $ROLL) < $ROLL_ONE_TENTH) { 

  # if the reading is smaller than the previous,  

  # we can still take it as long as 

  # it was a wrap-around.  We also reject zero values. 

  $previous = $lastest; 

} 

This case is treated as overflow and the rollover amount is added to the final result.  Overflow 

happens about once a year for these meters.  

Templates 

We have created two templates.  Accessing template one returns the energy consumption for a 

specified building compared with itself at the same time of day one day ago.  The HTTP GET 



12 
 

request accepts the building name and template ordinal, and in return replies with the kWh 

energy consumption during a one-hour period as well as the date asked for.  It also returns a 

simple result which scores the lowest at 1 and the highest at 5.  Currently, we expose the actual 

kWh usage along with the vote but there is concern that when this database is eventually 

exposed to the public that we would want to keep that information internal. 

Accessing template two returns the energy consumption as a comparison between two 

buildings at a specified time of day one day ago as well as one week ago.  Buildings vary widely 

in the energy consumption and thus only similar buildings would provide meaningful 

comparison.  For example, the comparison of student residence buildings. 

To reduce load on the ION API, previous results that have been cached will be saved to disk 

with the query terms as part of the filename.  As the cached values are of ION readings in the 

past, the cached values will never become stale.  This is a simple and deterministic caching 

mechanism.  A scheduled task on the ION API host must periodically trim cached files by sorting 

them according to their time stamp to prevent exhausting disk space. 

  



13 
 

5. PROJECT CONCERNS 

This subsection will consider some concerns. 

Concurrent Access 

There is a concern of concurrent access to the database causing an inconsistent state if two 

nodes are writing to the same file.  This could only happen if both connections were running 

the exact same query at the exact same time.  Both threads could see the cached result not 

existing, and then both start to generate the cached result and write it to file.  Because the 

code writes to cache file one line at a time, there is a chance of corruption if both write at the 

same time.  A possible solution to this would be to save state to the local machine in the form 

of a semaphore of each file. 

It is important to filter all URL parameters from the public as there can be deliberatelu as well 

as unintentionally malicious parameters.  Currently, because the API sits behind the UBC 

firewall, it is not exposed to this.  As well, 

Effective Communication and Visualization 

Effective visualization has been a hurdle for us as we have found it to be easier to recognize an 

ineffective visualization than to come up with a novel representation.  The result of a 

comparison is a number between 1 and 5.  This can be configured in Cool Sign to map to a table 

of pre-generated graphics.  One visualization is to display an energy-conserving idea when 

consumption is high, for example, reminding people to switch off lights when not in use.  

Another visualization would use humor, for example a drenched squirrel chastising the 

audience’s excessive use of laundry driers while he is hand-wringing his own fur. 



14 
 

There really are a lot of possibilities with communicating the idea to conserve energy.  Perhaps 

more important than the specific visualization itself is that the messages should be random or 

at least appear to passerby’s that there is frequently new content each time they look.  

Otherwise, it is likely for people to gradually tune out the perpetually drenched squirrel. 

  



15 
 

6. RESULTS 

We achieved the project objectives of automating the process of transferring ION Database 

information to display nodes.  As well, we found that the existing infrastructure in place works 

well with the ION API implementation.  Meanwhile, we did not have the opportunity to interact 

with the public to solicit feedback on visualization methods due to time constraints.  As well, an 

outstanding work item is full sanitization of received URL parameters.  I would recommend that 

persons involved in future work ensure that they fully understand the subtleties of Perl data 

structure as I had a significant ramp up period due to this.  This project was a success and a 

good interim step for integration with personal mobile devices and web browsers. 

  



16 
 

7. CONCLUSION  

This report investigated how to integrate ION Database meter readings with existing UBC 

Electronic Signage infrastructure.   

We have successfully implemented two templates to accommodate different consumption 

patterns.  In addition, we have laid the groundwork for upstreaming to other data producers 

such as RSS feeds as well as downstreaming to other consumers such as personal mobile 

devices. 

Although the current implementation reads from a static file, it does so strictly row by row so 

that it can be easily ported to a live database without much modification.  On a similar vein, the 

ION API was designed with a Model-Controller design patter, completely abstracting one half of 

the code from the internal representation of the database.  The ION API project was a success. 




