CONTINUOUS OPTIMIZATION OF ENERGY IN BUILDINGS

Presented by:

Andrew Collins, POS(F) MRICS Associate Director, Project Services

ACHIEVING THE 2015 GHG REDUCTION TARGET CONTINUOUS OPTIMIZATION in buildings is one of three projects that will achieve the short term 2015 GHG reduction target of 33%: CONTINUOUS OPTIMIZATION in buildings UBC Bioenergy Research and Demonstration project Steam to hot water conversion of district heating system

CONTINUOUS OPTIMIZATION IN BUILDINGS

- Partnership with BC Hydro
- 72 large academic buildings completed in four phases between 2010 and 2016
- Energy conservation measures
 - "Tuning" the building automation system
 - Demand control strategies for laboratories
 - Improved behavior change programs
- Target: 10% GHG reduction

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

SUSTAINABILITY | PROJECT SERVICES

- BC HYDRO: TWO YEAR PAYBACK The BC Hydro Continuous Optimization Program funds 100% of UBC's cost of retaining Service Providers to perform the consulting associated with investigation / hand-off / coaching of energy saving measures with a maximum payback period of two (2) years:
 - Investigation,
 - · Hand-off (at the end of Implementation), and
 - Post Project
- NOTE: The Implementation Phase follows the Investigation. UBC is responsible for all costs associated with Implementation
- UBC: SIX YEAR PAYBACK Included in the Service Provider Scope of Work for UBC is the identification of potential measures, including major retrofits, with a payback period of between two (2) years and a maximum of six (6) years

Energy Management Information System (EMIS)

- Part of the BC Hydro Continuous Optimization Program is the provision of electric interval pulse meters and an energy management software service for monitoring energy usage
 - · A pulse meter provides data on energy use every 15 minutes
 - The reporting system software collects and analyzes the pulse meter data, and reports the building's real-time energy use
 - BC Hydro has engaged Pulse Energy to provide their EMIS web-based energy management software for the Phase 1, 2, & 3 buildings.
 - Software implementation: July 1 October 8, 2010

TYPICAL TWO YEAR PAYBACK ENERGY SAVING MEASURES

Weather Predictor

- A program on the DDC to predict the daily high temperature (DHT).
- The program can be set so if the DHT is >= 20°C, then the early morning heating is locked out.

TYPICAL TWO YEAR PAYBACK ENERGY SAVING MEASURES

Demand Controlled Ventilation

- Addition of CO₂ Sensors to provide a measure of air quality in the building.
- Ventilation levels can be controlled based on occupancy.

- Standard efficiency fluorescent lamps are 32W each.
- Use of high efficiency 25W fluorescent lamps with imperceptible reduction in light level.

OTHER TYPICAL TWO YEAR PAYBACK ENERGY SAVING MEASURES

- Daily, Weekly, and Monthly HVAC Scheduling to reflect occupancy
- Optimization and Auto Control of Heating in transitional occupancies such as corridors and lobbies
- 3. Room Temperature Optimization
- 4. Ventilation Fan Speed Reduction
- 5. Radiation Temperature Optimization

CONTINUOUS OPTIMIZATION PHASING STRUCTURE

Phase 1 February 2010 – July 2013

17 research intensive laboratory buildings

Area: ~1.98 million ft2

Phase 2 January 2011 – March 2014

18 laboratory and resource buildings

Area: ~1.94 million ft2

Phase 3 January 2012 – March 2015

28 laboratory, office, & classroom buildings area

Area: ~2.35 million ft2

Phase 4 January 2013 – March 2016

6 buildings under construction or in planning stage

Area: ~912 thousand ft2

CONTINUOUS OPTIMIZATION PHASING STRUCTURE

Phase 1 February 2010 – July 2013

Investigation July 2010 – July 2011

Implementation September 2011 – August 2012

Post Project Coaching August 2012 – July 2013

Phase 2 January 2011 – March 2014

Investigation April 2011 – March 2012

Implementation May 2012 – April 2013

Post Project Coaching April 2013 – March 2014

CONTINUOUS OPTIMIZATION PHASING STRUCTURE

Phase 3 January 2012 – March 2015

Investigation April 2012 – March 2013

Implementation May 2013 – April 2014

Post Project Coaching April 2014 – March 2015

Phase 4 January 2013 – March 2016

Investigation April 2013 – March 2014

Implementation May 2014 – April 2015

Post Project Coaching April 2015 – March 2016

CONTINUOUS OPTIMIZATION UBC ENERGY DASHBOARD

Pulse Energy's EMIS, web-based energy management software delivers a building's energy data to three user groups:

- 1. Building occupants and the public
- 2. Students and researchers
- 3. Bldg Ops & senior management

- Engaging building occupants and the public in a building's energy management is becoming increasingly important.
- ➤ The Pulse™ Dashboard can be a key component in promoting end user energy conservation and tracking the effectiveness of occupant engagement programs.
- The Dashboard provides real-time feedback to the building occupants about their energy conservation measures

CONTINUOUS OPTIMIZATION UBC ENERGY DASHBOARD

CONTINUOUS OPTIMIZATION UBC ENERGY DASHBOARD

CONTINUOUS OPTIMIZATION UBC ENERGY DASHBOARD

CONTINUOUS OPTIMIZATION UBC ENERGY DASHBOARD

OCCUPANT DASHBOARD

CONTINUOUS OPTIMIZATION VS ECOTREK

- Ecotrek was introduced to the campus in 2002.
 - Utility cost increases 1997-2002 had almost doubled
 - Reduce utility costs while providing much needed campus renewal due to a major growth in deferred maintenance.

	CONTINUOUS OPTIMIZATION	ecoTrek
Payback period	2 years BCH 6years UBC	Average of all measures – 10.9 years
Target Reductions	GHG/natural gas	Consumption of electricity/gas/water
Granular level of Monitoring	Detailed system level monitoring	Early overall building monitoring
Social changes	A special section to address user behavior	Limited user behavior

CONTINUOUS OPTIMIZATION

THANK YOU